Provably Secure Identity based Provable Data Possession

Yong Yu, Yafang Zhang

University of Electronic Science and Technology of China

Yi Mu, Willy Susilo

University of Wollongong, Australia

Outline

- Cloud data integrity
- Basic idea of cloud data auditing
- Flaws of an ID-based auditing protocol
- Generic construction of ID-based auditing protocol
- A new construction of ID-based auditing protocol with zero-knowledge privacy
- Conclusion

1 Cloud data integrity

Cloud Computing: Advantages

Cloud computing enjoys a "pay-per-use model for enabling available, convenient and on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction." – NIST

Cloud Storage vs. Data Integrity

- Cloud storage service allows owners to outsource their data to cloud servers for storage and maintenance.
 - Low capital costs on hardware and software, low management and maintenance overheads, universal on-demand data access, etc
 - E.g., Amazon S3.

Cloud Storage vs. Data Integrity

- However, data outsourcing also eliminates owners' ultimate control over their data.
- The cloud server is not fully trusted.
 - Try to hide data loss incidents in order to maintain their reputation.
 - Might discard the data that have not been or are rarely accessed for monetary reasons.

Data Integrity Accidents

Top Threats to Cloud Computing V1.0

Prepared by the Cloud Security Alliance March 2010

- **Insure Interfaces &APIs**
- Data Loss & Leakage
- **■** Hardware Failure

64%!

TECH

Amazon's Cloud Crash Disaster Permanently Destroyed Many Customers' Data

HENRY BLODGET | APR 28 2011, 9:10 PM | ● | ■ 2 | ■

■ Amazon's Huge EC2
Cloud Service Crash

Remote Data Integrity Checking

- Trivial Schemes
 - Check data upo retrieval
 - o Ask the storage sever to MAC he entire file
 - Ask the cloud server to sand a subset of randomlypicked file blocks along with their MACs

3 ID-based Cloud Auditing

ID-based Cryptography

Simplify Key Management

ID-based PDP

Wang et al.'s ID-based PDP

Setup: PKG's secret key $x \in Z_a^*$, public key $y = g^x$.

PPs: (G1,G2,q,g,H,h,h1,f,\pi,y);

Extract:
$$sk_{ID} = (R, \tau)$$
 $R = g^r, \tau = r + xH(ID, R) \bmod q$.
$$g^{\tau} = Ry^{H(ID, R)}.$$

TagGen: Compute $F_{ij} = h_1(\widehat{F}_{ij})$, $\sigma_i = (h(Ni, CSi, i) \prod_{j=1}^{s} u_j^{F_{ij}})^{\tau}$.

Challenge: (c,k1,k2)

ProofGen: $\sigma = \prod \sigma_i^{a_i}$, $F_j = \sum a_i F_{ij} (1 \le j \le s)$

Verify: $e(\sigma, g) \stackrel{?}{=} e(\prod_{i=1}^{c} h_i^{a_i} \prod_{j=1}^{s} u_j^{F'_j}, Ry^{H(ID,R)}).$

Huaqun Wang: Identity-Based Distributed Provable Data Possession in Multicloud Storage. IEEE T. Services Computing 8(2): 328-340 (2015)

Comments on the Protocol

1 Soundness: $F_{ij} = h_1(\hat{F}_{ij})$,

2 ID-based: R

3 Security model: Unforgeability

- 3. Challenge: C generates a challenge chal which defines a ordered collection $\{ID^*, i_1, i_2, \ldots, i_c\}$, where $ID^* \not\in S_1$, $\{i_1, i_2, \ldots, i_c\} \not\subseteq \mathbb{I}_1$, and c is a positive integer. The adversary is required to provide the data possession proof for the blocks F_{i_1}, \ldots, F_{i_c} .
- 4. Second-Phase Queries: Similar to the First-Phase Queries. Let the Extract query identity set be S_2 and the TagGen query index set be \mathbb{I}_2 . The restriction is that $\{i_1, i_2, \ldots, i_c\} \not\subseteq (\mathbb{I}_1 \cup \mathbb{I}_2)$ and $ID^* \not\in (S_1 \cup S_2)$.
- 5. Forge: The adversary A responses θ for the challenge chal.

Huaqun Wang: Identity-Based Distributed Provable Data Possession in Multicloud Storage. IEEE T. Services Computing 8(2): 328-340 (2015)

Generic Construction of ID-based PDP

M. Bellare, C. Namprempre, G. Neven. Security proofs for identity-based identification and signature schemes, Eurocrypt 2004, LNCS 3027, 268-286, 2004.

```
ID-PDP. Setup (1^k): DS. Setup(1^k) \rightarrow (sk, pk) \Rightarrow (msk, mpk)
 ID-PDP.Extract(ID,mpk,msk):
           PDP.KeyGen(1^k) \rightarrow (pk,sk)
                                                 (k_{ID}, pk, sk)
           DS.Sign(msk, id \parallel pk) \rightarrow k_m
ID-PDP.Store(F, ID, mpk, k_m):
         (k_{ID}, pk, sk) PDP.Store(F,sk,pk) \rightarrow F*
ID-PDP.Proof(mpk,ID):
     DS. Verify(mpk, id \parallel pk, k_m) = 1
      PDP. Verify(pk, id \parallel pk, k_m) = 1
```

ID-PDP.Proof(mpk,ID):

Verifier

Cloud Server

DS. Verify
$$(mpk, id \parallel pk, k_{ID})$$

PDP. Challenge(pk)

proof=PDP. Proof(pk, F*, chal)

PDP. Verify(pk,proof,chal)

proof

An instance

H. Shacham and B. Waters, Compact Proofs of Retrievability, Asiacrypt 2008, LNCS 5350, pp. 90-107, 2008.

Security

H. Shacham and B. Waters, Compact Proofs of Retrievability, Asiacrypt 2008, LNCS 5350, pp. 90-107, 2008.

Evaluation

Block size: 1k-4k

Time cost of prove protocol

A Novel Construction

Basic Idea

Key-Aggregate Cryptosystem

Asymmetric Group Key Agreement

Key-Aggregate Cryptosystem for Scalable Data Sharing in Cloud Storage, Cheng-Kang Chu, S. M. Chow, Jianying Zhou, R. H. Deng et al. IEEE Trans. on Parallel and Distributed Systems, 25(2), 2014.

Qianhong Wu, <u>Yi Mu</u>, <u>Willy Susilo</u>, <u>Bo Qin</u>, <u>Josep Domingo-Ferrer</u>: Asymmetric Group Key Agreement. <u>EUROCRYPT 2009</u>: 153-170

Lei Zhang, Qianhong Wu, Bo Qin: Authenticated Asymmetric Group Key Agreement Protocol and Its Application. ICC 2010: 1-5

Basic Tools

Bilinear Pairing

$$e: G_1 \times G_1 \rightarrow G_2$$

Bilinearity

Non-Degeneracy

Efficient Computation

Equality of Discrete Logarithm

$$POK\{(x): Y_1 = g_1^x \land Y_2 = g_2^x\}$$

Prover

Verifier

$$\rho \in Z_q, T_1 = g_1^{\rho}, T_2 = g_2^{\rho} \qquad (T_1, T_2)$$

$$c \in \{0, 1\}^{\lambda}$$

$$z = \rho - cx \operatorname{mod} q \qquad z$$

$$T_1 = g_1^z Y_1^c \wedge T_2 = g_2^z Y_2^c$$

Our Construction

Setup

$$\alpha \in Z_q^*, P_{pub} = g^{\alpha}. \quad H_1, H_2 : \{0,1\}^* \to G_1, H_3 : G_2 \to \{0,1\}^l$$

System Parameter: $(G_1, G_2, e, g, P_{pub}, H_1, H_2, H_3, l)$

$$s = H_1(ID)^{\alpha}$$

TagGen
$$M = m_1 m_2 \cdots m_n$$

$$(1)\eta \in Z_q^*, r = g^{\eta}.$$

$$(2)\sigma_i = s^{m_i}H_2(fname || i)^{\eta}.$$

Upload:
$$(M, r, \{\sigma_i\}, IDS(r || fname))$$

Challenge-GenProof-CheckProof

The Verifier Cloud Server

- 1. Choose a challenge set $Q = \{(i, v_i)\};$
- 2. Compute $c_1 = g^{\rho}, Z = e(H_1(ID), P_{pub}), c_2 = Z^{\rho};$
- 3. Generate a knowledge proof pf:

$$POK\{(\rho): c_1 = g^{\rho} \land c_2 = Z^{\rho}\};$$

4. Generate a challenge

$$chal = (c_1, c_2, Q, pf)$$

chal

- 5. Verify pf;
- 6. Compute

$$\mu = \sum_{i \in I} v_i m_i,$$

$$\sigma = \prod_{i \in I} \sigma_i^{v_i},$$

- 7. Verify IDS(r||fname);
- 8. Verify $m' \stackrel{?}{=} H_3(\prod_{i \in I} e(H_2(fname||i)^{v_i}, r^{\rho})).$

$$m',r,\; \mathsf{IDS}(r||fname)$$

$$m' = H_3(e(\sigma, c_1) \cdot c_2^{-\mu}).$$

Security Proof Challenge

Soundness

$$\mu = \sum_{i \in I} v_i m_i, \quad \sigma = \prod_{i \in I} \sigma_i^{v_i}$$

Knowledge of Exponent Assumption:

Foy any adversary **A** that takes input (N, g, g^s) and returns group elements(C,Y) such that $Y = C^s$, there exists an "extractor" **B** which, given the same inputs as A, returns **x** such that $C = g^x$.

Security Proof Challenge

Challenge:

There is no μ in our response, but

 $(m', r, IDS(r \parallel fname))$

Solution:

Generic Group Model

Lower bounds for discrete logarithms and related problems, Eurocrypt '97, 256-266, 1997

Zero-knowledge privacy

◆ Public parameters and the response are independent of the file stored except the name of the file.

◆ (r,fname,IDS(r||fname),m') are not related to the content of the file.

Implementation

Setup	Extract	TagGen: off-line	TagGen: on-line	Challenge	GenProof	CheckProof
4.8 ms	N/A	241.9 second	20.3 second	351 ns per challenge	1.3 ms per challenge	6.6 ms per challenge

 $\label{eq:table in table in$

Increasing number of challenges for fixed size of file

Conclusion

- Cloud data integrity Checking
- Flaws of an ID-based auditing protocol
- Generic construction of ID-based auditing protocol
- A new construction of ID-based auditing protocol with zero-knowledge privacy
- Soundness and zero-knowledge privacy models for ID-based auditing

Thank YOU!

yuyong@uestc.edu.cn