From Stateful to Resettable
Hardware Using Symmetric
Assumptions

Nico Dottling, Daniel Kraschewski, Jorn Muller-Quade & Tobias
Nilges
Aarhus University, TNG Technology Consulting GmbH, Karlsruhe
Institute of Technology

General Setting

F is arbitrary functionality, e.g. OT, Commitment....

Motivation

* UC-secure protocols impossible
without setup-assumptions

e [Katz07] introduced tamper-
proof hardware as a UC setup-
assumption

e Stateful token: statistically UC-
secure OT is possible [DKM11]

What about resettable tokens?

e Still powerful, but most

statistically secure protocols
impossible [GIMS10]

e Feasibility of NI-2PC for
resettable functionalities shown
by [DMMN13]

 Open question: relation
between stateful and resettable
token protocols wrt feasibility?

Our Results

* All protocols based on stateful tokens can be
transformed to use resettable tokens

* General compiler for UC-secure protocols

— Requires interaction

— Requires computational assumptions (only OWF!)
or additional setup

Basic Idea

 Shift state from token to Alice:
— Alice authenticates inputs
— Bob sends authenticated value to token

* Problem: Alice must not learn Bob’s inputs

* Solution:
— Alice authenticates encoding of input

— Bob provides authentication and decoding
information

Blueprint of Our Approach

Alice Bob
e Generate token
program T
s . Token P
___ Ot
 Interaction with
Bob Un to
e Interaction with B poly(k)
token - times

Underlying protocol l'[;f

Blueprint of Our Approach

Alice Bob
e Generate token
program T
Token)
e
* |nteraction with
Bob < >
Up to
_ | poly(k)
times
* Interaction with
token -

Blueprint of Our Approach

Alice Bob
e Generate token
program T

 Enhanced -
program T* —

* |nteraction with
Bob < >

Up to

| poly(k)
times

* |nteraction with

Blueprint of Our Approach

Alice

* Generate toke Ansvyer s only az{then- Resettable token
program T ticated queries

e Enhanced P
program T* g

* |nteraction with
Bob <

A\ 4

Up to

- poly(k)
times

* |nteraction with

Blueprint of Our Approach

Alice Bob
e Generate token
program T

* Enhanced -
program T* —

* |nteraction with

Bob < >
e Authentication <enc(mp)
step Oinp_,

* |nteraction with

Up to

_ | poly(k)

times

Blueprint of Our Approach

Alice Bob
e Generate token
program T

e Enhanced

program T*

“““““““ T Alice obliviously

* Interaction authenticates input
Bob

 Authentication <enc(mp) Up to

step Oinp_, _ poly(k)
times

* |nteraction with

Blueprint of Our Approach

Alice Bob
e Generate token
program T

 Enhanced Eﬁ
program T* —

* |nteraction with

Bob < >
 Authentication <enc(mp) Up to
O'.
step o _ _ | poly(k)
* Verify e times
authentication

* |nteraction with

Blueprint of Our Approach

Alice Bob
* Generate token
program T
* Enhanced Eﬁ
program T" —
* Interaction with
Bob < —
 Authentication <enc(mp) Up to
step Oinp_, _ _ poly(k)
e Verify — times
authentication
* Interaction with
__ token o
{ Y J

New protocol IT%*°

Blueprint of Our Approach

Alice
e Generate token
program T

e Enhanced

Bob

program T*

* |nteraction with

Bob <

e Authentication <

step

\
> Caution: channel
enc(inp) from Alice to token
Oinp

e Verify —
authentication

* |nteraction with

New protocol IT%*°

Up to

poly(k)
times

Two Solutions

e Using resettably-sound zero-knowledge
— Non-black-box, but necessary [DMMN13, CKS+14]

* OT-hybrid model

— Allows only a fixed number of messages
— Inf.-th. transformation

Solution Based on resettably-sound ZK

Alice Bob

e Generate T ac-
cording to H;f

Token(T)
* Add “function-
ality’ >
) c T e Commit(inp; 1)
0 < Signsgk(c) o
" 1w« P(c,o,r,inp) Up to
_ | poly(k)
T, Lnp | TI — PRF(lTlp) times
) "V(mr) =17
out .
- out « T (inp)

Proof Idea

Every adversary againstll%°°can be transformed into adversary against l'[;;]c

H;f is UC-secure by assumption

Corrupted Receiver:
— Simulator has joint view of sender and token
— Locally performs all checks that the token would perform

— If checks are OK, proceed like in l'[;f

Corrupted Sender:
— Simulator has to input token code of IT1z*° into stateful token

A~

— Simulator first constructs T':
* Use source code of T"® to create V*
* Use non-black-box simulator on IV* to generate fake proof
* Upon input, fake proof and proceed with execution of T"¢*

Efficiency

e ZK proof for each token input, but
— Typically constant round protocols...
— Some protocols allow non-adaptive inputs

* Non-adaptive inputs: create hash-tree of
qgueries and authenticate root

— CRHF > OWF!
— Use Sig-Com Trees [CPS13], based on OWF

Implications

* Apply compiler to [DKM11] to obtain most
efficient UC-secure OT-protocol from OWF

— Token sent in one direction only
— Constant round

— Very efficient ([DKM11] provides inf-th. security)

* |[n OT-hybrid model, even inf-th. protocols can
be realized

Thank Youl

