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General Setting

F is arbitrary functionality, e.g. OT, Commitment....



Motivation

* UC-secure protocols impossible
without setup-assumptions

e [Katz07] introduced tamper-
proof hardware as a UC setup-
assumption

e Stateful token: statistically UC-
secure OT is possible [DKM11]




What about resettable tokens?

e Still powerful, but most

statistically secure protocols
impossible [GIMS10]

e Feasibility of NI-2PC for
resettable functionalities shown
by [DMMN13]

 Open question: relation
between stateful and resettable
token protocols wrt feasibility?




Our Results

* All protocols based on stateful tokens can be
transformed to use resettable tokens

* General compiler for UC-secure protocols

— Requires interaction

— Requires computational assumptions (only OWF!)
or additional setup



Basic Idea

 Shift state from token to Alice:
— Alice authenticates inputs
— Bob sends authenticated value to token

* Problem: Alice must not learn Bob’s inputs

* Solution:
— Alice authenticates encoding of input

— Bob provides authentication and decoding
information
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Two Solutions

e Using resettably-sound zero-knowledge
— Non-black-box, but necessary [DMMN13, CKS+14]

* OT-hybrid model

— Allows only a fixed number of messages
— Inf.-th. transformation
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Proof Idea

Every adversary againstll%°°can be transformed into adversary against l'[;;]c

H;f is UC-secure by assumption

Corrupted Receiver:
— Simulator has joint view of sender and token
— Locally performs all checks that the token would perform

— If checks are OK, proceed like in l'[;f

Corrupted Sender:
— Simulator has to input token code of IT1z*° into stateful token

A~

— Simulator first constructs T':
* Use source code of T"® to create V*
* Use non-black-box simulator on IV* to generate fake proof
* Upon input, fake proof and proceed with execution of T"¢*



Efficiency

e ZK proof for each token input, but
— Typically constant round protocols...
— Some protocols allow non-adaptive inputs

* Non-adaptive inputs: create hash-tree of
qgueries and authenticate root

— CRHF > OWF!
— Use Sig-Com Trees [CPS13], based on OWF



Implications

* Apply compiler to [DKM11] to obtain most
efficient UC-secure OT-protocol from OWF

— Token sent in one direction only
— Constant round

— Very efficient ([DKM11] provides inf-th. security)

* |[n OT-hybrid model, even inf-th. protocols can
be realized
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