Privacy-assured Outsourced Multiplications for Additively Homomorphic Encryption on Finite Fields

Per Hallgren 1 Martín Ochoa 2,3 Andrei Sabelfeld 1

- 1. Chalmers University of Technology
- 2. Technische Universität München
- 3. Singapore University of Technology and Design

November 20, 2015

CHALMERS

The problem of honest-but-curious adversaries

Using a too weak attacker model can have serious consequences

The problem of honest-but-curious adversaries

Using a too weak attacker model can have serious consequences

Honest

The problem of honest-but-curious adversaries

Using a too weak attacker model can have serious consequences

Arithmetic formulas

- Many privacy-preserving solutions use arithmetic formulas
 - Privacy-preserving face recognition
 - Privacy-preserving location proximity
 - Privacy-preserving auctioning and bartering systems
 - Privacy-preserving voting

Arithmetic formulas

- Many privacy-preserving solutions use arithmetic formulas
 - Privacy-preserving face recognition
 - Privacy-preserving location proximity
 - Privacy-preserving auctioning and bartering systems
 - Privacy-preserving voting
- Common assumption is honest-but-curious

Arithmetic formulas

- Many privacy-preserving solutions use arithmetic formulas
 - Privacy-preserving face recognition
 - Privacy-preserving location proximity
 - Privacy-preserving auctioning and bartering systems
 - Privacy-preserving voting
- Common assumption is honest-but-curious
- Many current solutions suffer
 - Face recognition: Sadeghi et al. 2009, Erkin et al. 2009
 - Location proximity: Zhong et al. 2007, Sedenka and Gasti 2014, Hallgren et al. 2015

Privacy-assurances when computing arithmetic formulas in the malicious model

- Privacy-assurances when computing arithmetic formulas in the malicious model
 - **Privacy** against malicious adversaries
 - Can lie about their inputs
 - Can potentially give false outputs to the other party
 - Can not learn anything about the other parties outputs

- Privacy-assurances when computing arithmetic formulas in the malicious model
 - Privacy against malicious adversaries
 - Can lie about their inputs
 - Can potentially give false outputs to the other party
 - Can not learn anything about the other parties outputs
 - Two-party setting
 - Two principals Alice (A) and Bob (B)
 - Alice is the initiating party, and Alice receives the output

- Privacy-assurances when computing arithmetic formulas in the malicious model
 - Privacy against malicious adversaries
 - Can lie about their inputs
 - Can potentially give false outputs to the other party
 - Can not learn anything about the other parties outputs
 - Two-party setting
 - Two principals Alice (A) and Bob (B)
 - Alice is the initiating party, and Alice receives the output
 - Goal
 - Bob learns nothing
 - Alice learns at most the intended output

- ullet k,K private and public key.
 - Private key held by Alice
 - Public key globally known

- k, K private and public key.
 - Private key held by Alice
 - Public key globally known
- ullet The encryption of a plaintext p using K is denoted as $[\![p]\!]$

- k, K private and public key.
 - Private key held by Alice
 - Public key globally known
- ullet The encryption of a plaintext p using K is denoted as $[\![p]\!]$
- ullet plaintext space ${\mathcal M}$ isomorphic to the field $({\mathbb Z}_p,\cdot,+)$

- k, K private and public key.
 - Private key held by Alice
 - Public key globally known
- ullet The encryption of a plaintext p using K is denoted as $[\![p]\!]$
- ullet plaintext space ${\mathcal M}$ isomorphic to the field $({\mathbb Z}_p,\cdot,+)$
- Key properties we will use
 - Addition: $[m_1 + m_2] = [m_1] \oplus [m_2]$

- k, K private and public key.
 - Private key held by Alice
 - Public key globally known
- ullet The encryption of a plaintext p using K is denoted as $[\![p]\!]$
- ullet plaintext space ${\mathcal M}$ isomorphic to the field $({\mathbb Z}_p,\cdot,+)$
- Key properties we will use
 - Addition: $[m_1 + m_2] = [m_1] \oplus [m_2]$
 - Subtraction: $[m_1 m_2] = [m_1] \ominus [m_2]$

- k, K private and public key.
 - Private key held by Alice
 - Public key globally known
- ullet The encryption of a plaintext p using K is denoted as $[\![p]\!]$
- ullet plaintext space ${\mathcal M}$ isomorphic to the field $({\mathbb Z}_p,\cdot,+)$
- Key properties we will use
 - Addition: $[m_1 + m_2] = [m_1] \oplus [m_2]$
 - Subtraction: $\llbracket m_1 m_2 \rrbracket = \llbracket m_1 \rrbracket \ominus \llbracket m_2 \rrbracket$
 - Multiplication: $\llbracket m_1 \cdot m_2 \rrbracket = \llbracket m_1 \rrbracket \odot m_2$

- k, K private and public key.
 - Private key held by Alice
 - Public key globally known
- ullet The encryption of a plaintext p using K is denoted as $[\![p]\!]$
- ullet plaintext space ${\mathcal M}$ isomorphic to the field $({\mathbb Z}_p,\cdot,+)$
- Key properties we will use
 - Addition: $[m_1 + m_2] = [m_1] \oplus [m_2]$
 - Subtraction: $[m_1 m_2] = [m_1] \ominus [m_2]$
 - Multiplication: $\llbracket m_1 \cdot m_2 \rrbracket = \llbracket m_1 \rrbracket \odot m_2$
 - Blinding: given $\mathcal{M}^{\mathcal{U}}$ uniformly random distribution in $\mathcal{M}\setminus\{0\}$
 - $\llbracket m \rrbracket \oplus \llbracket b \rrbracket = \llbracket r \rrbracket$, with $b, r \in \mathcal{M}^{\mathcal{U}}$
 - $\llbracket m \rrbracket \odot \llbracket b \rrbracket = \llbracket r \rrbracket$, with $b, r \in \mathcal{M}^{\mathcal{U}}$

• Since an additively homomorphic encryption system has

- Since an additively homomorphic encryption system has
 - Addition
 - Subtraction

- Since an additively homomorphic encryption system has
 - Addition
 - Subtraction
 - Multiplication with one known plaintext

- Since an additively homomorphic encryption system has
 - Addition
 - Subtraction
 - Multiplication with one known plaintext
- The only thing we need to add is $[\![m_1]\!] \odot [\![m_2]\!] = [\![m_1 \cdot m_2]\!]$

- Since an additively homomorphic encryption system has
 - Addition
 - Subtraction
 - Multiplication with one known plaintext
- ullet The only thing we need to add is $[\![m_1]\!]\odot [\![m_2]\!]=[\![m_1\cdot m_2]\!]$
- We solve this using *outsourcing* these multiplications through a novel protocol called *BetterTimes*.

Communication Overview

- In our setting, protocols follow the form
 - Alice initiates the protocol
 - Bob sees only encrypted data (he can't decrypt)
 - Possibly there are more round trips to finish the computation
 - Bob responds with the final result

The protocol is outlined as follows:

 $\ensuremath{\mathbf{0}}$ BetterTimes is run when Bob wants to multiply $[\![x]\!]$ and $[\![y]\!]$

- \blacksquare BetterTimes is run when Bob wants to multiply $[\![x]\!]$ and $[\![y]\!]$
- 2 He sends the blinded [x'], [y'], challenge [c] to Alice

- ${\bf 0}$ BetterTimes is run when Bob wants to multiply $[\![x]\!]$ and $[\![y]\!]$
- ② He sends the blinded [x'], [y'], challenge [c] to Alice
- $\textbf{ 3} \ \, \text{Alice replies with } \llbracket z' \rrbracket (= \llbracket x' \cdot y' \rrbracket) \ \, \text{and } \, \textit{assurance} \ \, \llbracket a' \rrbracket$

- \blacksquare BetterTimes is run when Bob wants to multiply $[\![x]\!]$ and $[\![y]\!]$
- ② He sends the blinded [x'], [y'], challenge [c] to Alice
- **3** Alice replies with $[\![z']\!] (= [\![x' \cdot y']\!])$ and assurance $[\![a']\!]$
- $\textbf{ 4} \ \, \text{Bob removes the blinding from } \llbracket z' \rrbracket \ \, \text{to arrive at } \llbracket z \rrbracket$

- \blacksquare BetterTimes is run when Bob wants to multiply $[\![x]\!]$ and $[\![y]\!]$
- ② He sends the blinded [x'], [y'], challenge [c] to Alice
- **3** Alice replies with $[\![z']\!] (= [\![x' \cdot y']\!])$ and assurance $[\![a']\!]$
- **4** Bob removes the blinding from $[\![z']\!]$ to arrive at $[\![z]\!]$
- **6** Bob computes $[\![a]\!]$ using all of $[\![x']\!]$, $[\![y']\!]$, $[\![z']\!]$ and $[\![a']\!]$

BetterTimes communication

Figure: Visualization of the attested multiplication protocol

Using BetterTimes in a formula

• Bettertimes assures that $[\![a]\!]$ is zero if and only if $[\![z]\!] = [\![x\cdot y]\!]$, and a uniformly random value otherwise.

Using BetterTimes in a formula

- Bettertimes assures that $[\![a]\!]$ is zero if and only if $[\![z]\!] = [\![x\cdot y]\!]$, and a uniformly random value otherwise.
- When Bob has computed the final result [result], he sends $[result] + \sum a_i$ to Alice, where a_i is the assurance value corresponding to each outsourced multiplication.

Using BetterTimes in a formula

- Bettertimes assures that $[\![a]\!]$ is zero if and only if $[\![z]\!] = [\![x\cdot y]\!]$, and a uniformly random value otherwise.
- When Bob has computed the final result [result], he sends $[result] + \sum a_i$ to Alice, where a_i is the assurance value corresponding to each outsourced multiplication.
- Alice receives the correct output if and only if she computed all outsourced multiplications honestly, and a uniformly random value otherwise

Private Evaluation of Arithmetic Formula

Proof Outline for Privacy of Arbitrary Formula

Our Privacy definition follows the standard framework for secure multi-part computation (Lindell and Pinkas 2008)

Theorem

For a fixed but arbitrary arithmetic formula $g(\overrightarrow{x}, \overrightarrow{y})$ represented by a recursive instruction $\iota \in \mathbf{Ins}$, for every adversary $\mathcal A$ against the protocol π resulting from $evaluate(\iota)$, there exist a simulator $\mathcal S$ such that:

$$\{\mathsf{IDEAL}_{g,\mathcal{S}(s)}(\overrightarrow{x},\overrightarrow{y})\} \stackrel{\mathtt{c}}{=} \{\mathsf{REAL}_{\pi,\mathcal{A}(s)}(\overrightarrow{x},\overrightarrow{y})\}$$

where $\stackrel{c}{\equiv}$ denotes computational indistinguishability of distributions.

Proof Outline for Privacy of Arbitrary Formula

Our Privacy definition follows the standard framework for secure multi-part computation (Lindell and Pinkas 2008)

Theorem

For a fixed but arbitrary arithmetic formula $g(\overrightarrow{x}, \overrightarrow{y})$ represented by a recursive instruction $\iota \in \mathit{Ins}$, for every adversary $\mathcal A$ against the protocol π resulting from $evaluate(\iota)$, there exist a simulator $\mathcal S$ such that:

$$\{\mathsf{IDEAL}_{g,\mathcal{S}(s)}(\overrightarrow{x},\overrightarrow{y})\} \stackrel{\mathtt{c}}{=} \{\mathsf{REAL}_{\pi,\mathcal{A}(s)}(\overrightarrow{x},\overrightarrow{y})\}$$

where $\stackrel{c}{=}$ denotes computational indistinguishability of distributions.

The full proof is given in the paper

Proof Outline for Privacy of Arbitrary Formula

Our Privacy definition follows the standard framework for secure multi-part computation (Lindell and Pinkas 2008)

Theorem

For a fixed but arbitrary arithmetic formula $g(\overrightarrow{x}, \overrightarrow{y})$ represented by a recursive instruction $\iota \in \mathit{Ins}$, for every adversary $\mathcal A$ against the protocol π resulting from $evaluate(\iota)$, there exist a simulator $\mathcal S$ such that:

$$\{\mathsf{IDEAL}_{g,\mathcal{S}(s)}(\overrightarrow{x},\overrightarrow{y})\} \stackrel{\mathsf{c}}{\equiv} \{\mathsf{REAL}_{\pi,\mathcal{A}(s)}(\overrightarrow{x},\overrightarrow{y})\}$$

where $\stackrel{c}{=}$ denotes computational indistinguishability of distributions.

- The full proof is given in the paper
- The theorem implicates that any protocol evaluating arithmetic formulas as defined in the paper can be evaluated in the presence of a malicious adversary while preserving privacy

Benchmarks

- Performed benchmarks on prototype implementation in python
- Comparing to outsourced multiplications secure only against honest adversaries

Table: Times (in milliseconds) for outsourced multiplication

	Time (in milliseconds)					
Plaintext	1024 bits			2048 bits		
space	This	Naive	Extra	This	Naive	Extra
	approach	approach	work	approach	approach	work
2^2	6.286	4.016	56.52%	29.686	19.458	52.56%
2^{8}	6.400	4.017	59.32%	30.052	19.484	54.24%
2^{16}	6.432	4.148	55.06%	30.188	19.574	54.22%
2^{24}	6.538	4.100	59.46%	30.578	19.801	54.43%

 Benchmarks show that our more secure approach costs about 53-60% extra work for a multiplication

Protocols that can be secured with BetterTimes

- Several existing works can use the proposed approach to increase protection against malicious attackers
 - Privacy-preserving face recognition: Sadeghi et al. 2009, Erkin et al. 2009
 - Privacy-preserving location proximity: Zhong et al. 2007,
 Sedenka and Gasti 2014, Hallgren et al. 2015

Conclusions

- Presented BetterTimes
- Using BetterTimes one can compute any arithmetic formula in the presence of a malicious Alice
- The overhead, compared to protection against honest adversaries, is about 55%
 - Of each multiplication, not of the formula as a whole
 - Usually the number of multiplications is minimized, as additions are cheap with additively homomorphic encryption

Thank you for your attention!

Questions?

Thanks! Hallgren et al. ProvSec 2015 16/16