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The problem of honest-but-curious adversaries

• Using a too weak attacker model can have serious
consequences
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Arithmetic formulas

• Many privacy-preserving solutions use arithmetic formulas
• Privacy-preserving face recognition
• Privacy-preserving location proximity
• Privacy-preserving auctioning and bartering systems
• Privacy-preserving voting

• Common assumption is honest-but-curious
• Many current solutions suffer

• Face recognition: Sadeghi et al. 2009, Erkin et al. 2009
• Location proximity: Zhong et al. 2007, Sedenka and Gasti

2014, Hallgren et al. 2015
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General Problem

• Privacy-assurances when computing arithmetic formulas in the
malicious model

• Privacy against malicious adversaries
• Can lie about their inputs
• Can potentially give false outputs to the other party
• Can not learn anything about the other parties outputs

• Two-party setting
• Two principals Alice (A) and Bob (B)
• Alice is the initiating party, and Alice receives the output

• Goal
• Bob learns nothing
• Alice learns at most the intended output
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The solution is based upon Homomorphic Encryption

• k,K private and public key.
• Private key held by Alice
• Public key globally known

• The encryption of a plaintext p using K is denoted as JpK
• plaintext spaceM isomorphic to the field (Zp, ·,+)

• Key properties we will use

• Addition: Jm1 +m2K = Jm1K⊕ Jm2K
• Subtraction: Jm1 −m2K = Jm1K	 Jm2K
• Multiplication: Jm1 ·m2K = Jm1K�m2

• Blinding: givenMU uniformly random distribution inM\ {0}
• JmK⊕ JbK = JrK, with b, r ∈MU

• JmK� JbK = JrK, with b, r ∈MU
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Extension to additively homomorphic encryption

• Since an additively homomorphic encryption system has

• Addition
• Subtraction
• Multiplication with one known plaintext

• The only thing we need to add is Jm1K� Jm2K = Jm1 ·m2K
• We solve this using outsourcing these multiplications through
a novel protocol called BetterTimes.

The Solution — Additions to AHE Hallgren et al. ProvSec 2015 6/16
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Communication Overview

• In our setting, protocols follow the form
• Alice initiates the protocol
• Bob sees only encrypted data (he can’t decrypt)
• Possibly there are more round trips to finish the computation
• Bob responds with the final result

Alice Bob

−−→
inpA

BetterT imes...

−−−→
JoutK
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BetterTimes

The protocol is outlined as follows:
1 BetterTimes is run when Bob wants to multiply JxK and JyK

2 He sends the blinded Jx′K, Jy′K, challenge JcK to Alice
3 Alice replies with Jz′K(= Jx′ · y′K) and assurance Ja′K
4 Bob removes the blinding from Jz′K to arrive at JzK
5 Bob computes JaK using all of Jx′K, Jy′K, Jz′K and Ja′K
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BetterTimes communication

Alice Bob

BetterT imes(JxK, JyK)

Jx′K, Jy′K, JcK

OS(Jx′K, Jy′K, JcK)

Jz′K, Ja′K
Jz′K, Ja′K

JzK, JaK

Figure: Visualization of the attested multiplication protocol
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Using BetterTimes in a formula

• Bettertimes assures that JaK is zero if and only if JzK = Jx · yK,
and a uniformly random value otherwise.

• When Bob has computed the final result JresultK, he sends
JresultK +

∑
ai to Alice, where ai is the assurance value

corresponding to each outsourced multiplication.
• Alice receives the correct output if and only if she computed
all outsourced multiplications honestly, and a uniformly
random value otherwise

The Solution — Arithmetic Formulas with BetterTimes Hallgren et al. ProvSec 2015 10/16
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Private Evaluation of Arithmetic Formula

Alice Bob
Ja1K, . . . , JanK

evaluate()

Local computations

JxK, JyK

JzK, JaiK

BetterTimesBetterTimes

Arithmetic FormulaArithmetic Formula

JresultK + J
∑
aiKg(Ja1K, . . . , JanK, b1, . . . , bn)
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Proof Outline for Privacy of Arbitrary Formula

Our Privacy definition follows the standard framework for secure
multi-part computation (Lindell and Pinkas 2008)

Theorem
For a fixed but arbitrary arithmetic formula g(−→x ,−→y ) represented by
a recursive instruction ι ∈ Ins, for every adversary A against the
protocol π resulting from evaluate(ι), there exist a simulator S
such that:

{IDEALg,S(s)(−→x ,−→y )}
c≡ {REALπ,A(s)(

−→x ,−→y )}

where
c≡ denotes computational indistinguishability of distributions.

• The full proof is given in the paper
• The theorem implicates that any protocol evaluating
arithmetic formulas as defined in the paper can be evaluated in
the presence of a malicious adversary while preserving privacy

Proof outline — Proof Outline for Privacy of Arbitrary FormulaHallgren et al. ProvSec 2015 12/16
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Benchmarks

• Performed benchmarks on prototype implementation in python
• Comparing to outsourced multiplications secure only against
honest adversaries

Table: Times (in milliseconds) for outsourced multiplication

Plaintext
space

Time (in milliseconds)
1024 bits 2048 bits

This
approach

Naive
approach

Extra
work

This
approach

Naive
approach

Extra
work

22 6.286 4.016 56.52% 29.686 19.458 52.56%
28 6.400 4.017 59.32% 30.052 19.484 54.24%
216 6.432 4.148 55.06% 30.188 19.574 54.22%
224 6.538 4.100 59.46% 30.578 19.801 54.43%

• Benchmarks show that our more secure approach costs about
53-60% extra work for a multiplication

Evaluation — Benchmarks Hallgren et al. ProvSec 2015 13/16



Protocols that can be secured with BetterTimes

• Several existing works can use the proposed approach to
increase protection against malicious attackers
• Privacy-preserving face recognition: Sadeghi et al. 2009, Erkin

et al. 2009
• Privacy-preserving location proximity: Zhong et al. 2007,

Sedenka and Gasti 2014, Hallgren et al. 2015

Protocols that can be secured with BetterTimes Hallgren et al. ProvSec 2015 14/16



Conclusions

• Presented BetterTimes
• Using BetterTimes one can compute any arithmetic formula in
the presence of a malicious Alice

• The overhead, compared to protection against honest
adversaries, is about 55%
• Of each multiplication, not of the formula as a whole
• Usually the number of multiplications is minimized, as

additions are cheap with additively homomorphic encryption

Conclusions Hallgren et al. ProvSec 2015 15/16



Thank you for your attention!

Questions?

Thanks! Hallgren et al. ProvSec 2015 16/16
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