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Agenda

• Motivation

– Zero-knowledge proofs useful when designing schemes

• Modules with bilinear maps

– Generalizes groups with pairings

• Non-interactive proofs for modules with bilinear maps

– Witness-indistinguishable

– Zero-knowledge in some cases

• Efficient non-interactive privacy-preserving proofs 

that can be used in groups with pairings



• Gen(1k) generates (p,G,H,T,e,g,h)

• G,H,T finite cyclic groups of order p

• Bilinear map e: G  H → T

– e(ga,hb) = e(g,h)ab

• G =g, H =h , T=e(g,h)

• Deciding group membership, group operations, 

and bilinear map efficiently computable

• Choices:

– Order p prime or composite, G = H or G  H, etc.

Groups with bilinear map



Constructions in bilinear groups

a,c  G, h  H, b,d  Zp

t = b+yd  (mod p)

tG = xyayct

tT = e(tG,hb)

y  Zp

x  G



Non-interactive proof for correctness

t = b+yd  (mod p)

tG = xyayct

tT = e(tG,ctG
b)

Are the constructions 

correct? I do not know your 

secret x, y.



Yes, here is a proof.



Non-interactive zero-knowledge proof

Prover VerifierSoundness:

Statement is true

Zero-knowledge:

Nothing but truth revealed

Common reference string

Proof: 

Witness for 

statement 

being true
Statement



Verifiably encrypted signature

• ElGamal encryption of Boneh-Boyen signature

(hr,yrs)   such that  e(vgm,s) = e(g,h)  

• Statement: y,c,d,v,m

• Witness: r,s such that c = hr, d = yrs, e(vgm,s)=e(g,h)

• Non-interactive zero-knowledge proof convinces 

verifier but keeps witness r,s private



Applications of non-interactive zero-

knowledge proofs

• Verifiable encryption

• Ring signatures

• Group signatures

• Voting

• Digital credentials

• E-cash

• …



Module

• An abelian group (A,+,0) is a Zp-module if Zp acts 

on A such that for all r,s  Zp x,y  A:  

– 1x = x

– (r+s)x = rx + sx

– r(x+y) = rx + ry

– (rs)x = r(sx)

• If p is a prime, then A is a vector space

• Examples: 

Zp, G, H, T, G2, H2, T4 are Zp-modules



Modules with bilinear map

• We will be interested in finite Zp-modules A, B, T 

with a bilinear map f: A  B  T

• Examples:

– e: G  H  T (x,y)  e(x,y)

– exp: G  Zp  G (x,y)  xy

– exp: Zp  H  H (x,y)  yx

– mult: Zp  Zp  Zp (x,y)  xy  (mod p)



Equations in modules with bilinear map

• Given f: A  B  T we are interested in equations

f(aj,yj) + f(xi,bi) + mijf(xi,yj) = t 

• Examples

t = b+yd  (mod p)

tG = xyayct

tT = e(tG,ctG
b)



Equations in modules with bilinear map

• Given f: A  B  T we are interested in equations

f(aj,yj) + f(xi,bi) + mijf(xi,yj) = t 

• Define x ∙ y = f(xi,yi)

• Rewrite equations as

a ∙ y + x ∙ b + x ∙ My = t



Statements and witnesses

• Setup: (p, A, B, T, f)

• Statement: N equations of the form (ai,bi,Mi,ti) with 

the claim that there exists x, y such that for all i: 

ai ∙ y + x ∙ bi + x ∙ Miy = ti

• Witness: x  Am, y  Bn  that satisfy all equations



Non-interactive proofs

• Common reference string: K(p,A,B,T,f)  

• Prover: P(,{(ai,bi,Mi,ti)}i,x,y)  

• Verifier: V(,{(ai,bi,Mi,ti)}i,)  accept/reject

• Completeness:

Given witness x,y for simultaneous satisfiability of 

equations the prover outputs accepting proof 

• Soundness:

If statement is false, i.e., no such x,y exists, then 

impossible to construct accepting 



Privacy

• Zero-knowledge: 

Proof  reveals nothing about x, y

• Witness-indistinguishability:

Proof  does not reveal which witness x, y out 

of many possible witnesses was used

• Zero-knowledge implies witness-indistinguishability

• Witness-indistinguishability weaker than ZK

– May leak partial information (e.g. all witnesses have x1 = 0)

– May leak entire witness when only one witness exists



Witness-indistinguishability

• Simulated common reference string: S(p,A,B,T,f)

– Computationally indistinguishable from real CRS

• On simulated common reference string :

– Given any satisfiable statement {(ai,bi,Mi,ti)}i and any two 

possible witnesses x0,y0 or x1,y1 the proofs using either 

witness have identical probability distributions

{ P(,{(ai,bi,Mi,ti)}i,x0,y0)   }

= { P(,{(ai,bi,Mi,ti)}i,x1,y1)   }



Modules and maps defined by setup and CRS

• Modules with linear and bilinear maps

f

A  B  T

iC  pA iD  pB iW  pT

C  D  W

F

• Non-trivial: pA(iC(x)) = x, pB(iD(y)) = y, pT(iW(z)) = z

• Commutative:

F(iC(x),iD(y)) = iW(f(x,y))

f(pA(c),pB(d)) = pT(F(c,d))



A simple equation

• Want to prove xA yB:  f(x,y) = t

• The prover computes  c = iC(x)  and  d = iD(y)

• The verifier checks  F(c,d) = iW(t)

• Completeness:

f

x , y  t

iC  iD  iW 

iC(x) ,       iD(y)  iW(t)

F



Soundness

• Soundness:

f

pA(c) ,     pB(d)  t

 pA  pB  pT

c , d  iW(t)

F

• Given proof c,d define x = pA(c) and y = pB(d) to 

get a solution to the equation f(x,y) = t



Sets of equations

• Define iC(x) = (iC(x1),…,iC(xm)) similar for iD(y)

• Define pA(c) = (pA(c1),…,pA(cn)) similar for pB(d)

• Define c  d = F(c1,d1)+…+F(cn,dn)

• Want to prove xAm yBn  satisfying N 
equations of the form a ∙ y + x ∙ b + x ∙ My = t

• Prover with x,y can compute  c = iC(x) , d = iD(y)

• Verifier checks for each equation

iC(a)  d + c  iD(b) + c  Md = iW(t)



Completeness and soundness

a, x b, y ∙ t
A  B  T

iC  pA iD  pB iW  pT

C  D  W

iC(a), c iD(b), d  iW(t)

• Completeness comes from linearity, bilinearity and    

the commutative property F(iC(x),iD(y)) = iW(f(x,y))

• Soundness comes from linearity, bilinearity, non-

triviality pA(iC(a)) = a, pB(iD(b)) = b, pT(iW(t)) = t and 

the commutative property f(pA(c),pB(d)) = pT(F(c,d))



Example

• Modules with linear and bilinear maps

x y e t

G  H  T

iC  pA iD  pB iW  pT

G2  H2  T4

(1,x) (1,y) E  (1,1,1,t)

• pA(c,x) = c-x, pB(d,y) = d-y, pT(u,v,w,t) = u-v-w-t

• E((c,x),(d,y)) = (e(c,d),e(c,y),e(x,d),e(x,y)) 

• Commutative:

E(iC(x),iD(y)) = iW(e(x,y))

e(pA(c,x),pB(d,y)) = pT(E((c,x),(d,y)))



Witness-indistinguishable?

• The example has no privacy at all

• Given iC(x) = ((1,x1),…,(1,xm)) and iD(y) = 

((1,y1),…,(1,yn)) easy to compute x, y

• What if in the general case iA, iB, iW are one-way 

functions and pA, pB, pT are hard to compute?

• Still not witness-indistinguishable

• Given two witnesses (x0, y0) and (x1,y1) it is easy 

to test whether iC(x) = iC(x0) and iD(y) = iD(y0)



Randomization

• No deterministic witness-indistinguishable proofs

• Need to randomize the maps x  c, y  d

• Common reference string: uCm , vDn

such that pA(u) = 0 and pB(v) = 0

• Compute c = iC(x) + Ru and  d = iD(y) + Sv

with random R  Matmm(Zp) , S  Matnn(Zp)

• Observe: pA(c) = pA(iC(x)+Ru) = pA(iC(x)) = x

• Example:If u = (g,g) then c = iC(x)ur = (gr,grx)



Soundness

• Common reference string: uCm , vDn

such that pA(u) = 0 and pB(v) = 0

• Compute c = iC(x) + Ru and  d = iD(y) + Sv

• For each equations a ∙ y + x ∙ b + x ∙ My = t

somehow (next slide) compute proof   Dm,   Cn

• Verifier checks  

iC(a)  d + c  iD(b) + c  Md = iW(t) + u   +   v

• Soundness – apply projections to get
a ∙ pB(d) + pA(c) ∙ b + pA(c) ∙ MpB(d) = t + 0 + 0

• So x = pA(c) and y = pB(d) satisfies all equations



Completeness

• Common reference string: uCm , vDn

• Compute c = iC(x) + Ru and  d = iD(y) + Sv

with random R  Matmm(Zp) , S  Matnn(Zp) 

• For each equations a ∙ y + x ∙ b + x ∙ My = t can use 

proof    = STiC(a) + STMT(iC(x)+Ru) ,   = RTiD(b) + RTMiD(y)

• Verification always works when x, y satisfy equations

iC(a)  d + c  iD(b) + c  Md

= iC(a)(iD(y)+Sv) + (iC(x)+Ru)iD(b) + (iC(x)+Ru)M(iD(y)+Sv)

= iW(t) +   v + u  



Witness-indistinguishability

• Simulated common reference string hard to 

distinguish from real common reference string

• Simulated common reference string: uCm , vDn

such that C = u1,…,um and D = v1,…,vn

• Compute c = iC(x) + Ru and  d = iD(y) + Sv

with random R  Matmm(Zp) , S  Matnn(Zp)

• On simulated common reference string

c and d are perfectly hiding x, y

• Indeed, for any x, y we get uniformly random c, d



Example

• Common reference string includes

u1 = (g,g), u2 = (g,g+ ), v1=(h,h), v2= (h,h+)

– Real CRS:  = 0,  = 0 

– Simulated CRS:   0,   0

– Indistinguishable: DDH in both G and H

• To commit to x pick (r1,r2)  Mat12(Zp) and set 

c = (c1,c2) = iC(x)u1
r1u2

r2 = (1,x) (g,g)r1 (g,g+ )r2

= (gr1+r2,g(r1+r2)gr2x)

• On real CRS we get ElGamal encryption of x

– pA(c) = c1
-c2 = x when  = 0

• On simulated CRS perfectly hiding x

– c = (c1,c2) random since u1, u2 linearly independent



Witness-indistinguishability

• The commitments c and d do not reveal x and y

when using a simulated common reference string

• But maybe the proofs ,  reveal something

• Let us therefore randomize the proofs as well

• For each equation we will pick ,  uniformly at 

random among solutions to verification equation

iC(a)  d + c  iD(b) + c  Md = iW(t) + u   +   v

• Given witness x0, y0 or x1, y1 we have uniformly 

random c, d and for each equation independent 

and uniformly random proofs ,



Randomizing the proofs

• Given u,v,c,d and a proof , such that

iC(a)d + ciD(b) + cMd = iW(t) + u + v

• Then there are other possible proofs 

iC(a)d + ciD(b) + cMd = iW(t) + u(-v) + (+u)v

• More generally for any TMatnm(Zp)

iC(a)d+ciD(b)+cMd = iW(t) + u(-TTv) + (+Tu)v

• We may also have HMatmn(Zp) such that uHv = 0

• Then we have 

iC(a)d+ciD(b)+cMd = iW(t) + u(+Hv) + v



Randomizing the proofs

• Given u,v,c,d and for each equation , such that

iC(a)d + ciD(b) + cMd = iW(t) + u + v

• Randomize each proof , as

’ =  - TTv + Hv ’ =  + Tu

• T is chosen at random from Matnm(Zp)

• H chosen at random in Matmn(Zp) such that uHv=0

• We still have correct verification for each equation

iW(t) + u’ + v’ = iW(t) + u(-TTv+Hv) + (+Tu)v

= iW(t) + u + uv = iC(a)d + ciD(b) + cMd



Witness-indistinguishability

• On simulation common reference string we now 

have perfect witness-indistinguishability; given x0, 

y0 or x1, y1 satisfying the equations we get the 

same distribution of commitments c, d and proofs

• Actually, every x, y satisfying all equations gives 

uniform random distribution on c, d and proofs

• Proof:

– We already know c, d are uniformly random

– For each equation ’ =  + Tu random since C = u

– For each equation ’ = -TTv+Hv uniformly random 

over ’ satisfying iC(a)d+ciD(b)+cMd=iW(t)+u’+’v

due to H uniformly random over uHv=0 and D = v



The setup and common reference string

• Setup and common reference string describes 

non-trivial linear and bilinear maps that commute

f

A  B  T

iC  pA iD  pB iW  pT

C  D  W

F

• Common reference string also describes u, v

• Real CRS: pA(u) = 0, pB(v) = 0

• Simulated CRS: C = u, D = v



The proof system

• Statement: N equations of the form
a ∙ y + x ∙ b + x ∙ My = t

• Witness: x, y satisfying all N equations

• Proof: c = iC(x) + Ru and  d = iD(y) + Sv
For each equation a ∙ y + x ∙ b + x ∙ My = t

set  = STiC(a) + STMT(iC(x)+Ru) + Tu

and  = RTiD(b) + RTMiD(y) - TTv + Hv

• Verification: For each eq. a ∙ y + x ∙ b + x ∙ My = t

check  iC(a)d + ciD(b) + cMd = iW(t) + u + v



Size of NIWI proofs

Cost of each 

variable/equation

Subgroup 

Decision

DDH in 

both groups

Decision 

Linear

Variable in G, H or Zp 1 2 3

Pairing product 1 8 9

Multi-exponentiation 1 6 9

Quadratic in Zp 1 4 6

Each equation constant cost. 

independently of number of public 

constants and secret variables. 

NIWI proofs can have sub-linear 

size compared to statement!



Zero-knowledge

• Are the NIWI proofs also zero-knowledge?

• Proof is zero-knowledge if there is a simulator that 

given the statement can simulate a proof

• Problem: The simulator does not know a witness

• Zero-knowledge in special case where all N 
equations are of the form a ∙ y + x ∙ b + x ∙ My = 0

• Now the simulator can use x = 0, y = 0 as witness



A more interesting special case

• If A = Zp and T = B then possible to rewrite
a ∙ y + x ∙ b + x ∙ My = t

as
a ∙ y + (-1)∙t + x ∙ b + x ∙ My = 0

• Using c0 = iC(-1) + 0u as a commitment to x0 = -1 

we can give NIWI proofs with witness (x0,x),y

• Soundness on a real CRS shows that for each 

equation we have
a ∙ y - 1∙t + x ∙ b + x ∙ My = 0 



A more interesting special case

• Simulated CRS generation:

Setup CRS such that iC(-1) = iC(0) + Tu for Zp
m

• Simulating proofs:

Give NIWI proofs for equations of the form
a ∙ y - x0∙t  + x ∙ b + x ∙ My = 0

• In NIWI proofs interpret c0 = iC(0) + Tu as a 

commitment to x0 = 0, which enables the prover to 

use the witness x = 0, y = 0 in all equations

• Zero-knowledge:

Simulated proofs using x0 = 0 are uniformly 

distributed just as real proofs using x0 = -1 are



Size of NIZK proofs

Cost of each 

variable/equation

Subgroup 

Decision

DDH in 

both groups

Decision 

Linear

Variable in G, H or Zp 1 2 3

Pairing product (t=1) 1 8 9

Multi-exponentiation 1 6 9

Quadratic in Zp 1 4 6



Summary

• Modules with commuting linear and bilinear maps

f

A  B  T

iC  pA iD  pB iW  pT

C  D  W

F

Randomized commitments and proofs in C, D

• Efficient NIWI and NIZK proofs that can be used 

when constructing pairing-based schemes



Open problems

• Modules with bilinear maps useful elsewhere?

– Groups:    Simplicity, possible to use special properties

– Modules:  Generality, many assumptions at once

– What is the right level of abstraction?

• Other instantiations of modules with bilinear map?

– Known constructions based on groups with bilinear map

– Other ways to construct them?


