

Pairing-Based Non-interactive Zero-Knowledge Proofs

Jens Groth University College London

Based on joint work with Amit Sahai

Agenda

- Motivation
 - Zero-knowledge proofs useful when designing schemes
- Modules with bilinear maps
 - Generalizes groups with pairings
- Non-interactive proofs for modules with bilinear maps
 - Witness-indistinguishable
 - Zero-knowledge in some cases
- Efficient non-interactive privacy-preserving proofs that can be used in groups with pairings

Groups with bilinear map

- Gen(1^k) generates (p,G,H,T,e,g,h)
- G,H,T finite cyclic groups of order p
- Bilinear map e: $G \times H \rightarrow T$ - $e(g^a,h^b) = e(g,h)^{ab}$
- $G = \langle g \rangle, H = \langle h \rangle, T = \langle e(g,h) \rangle$
- Deciding group membership, group operations, and bilinear map efficiently computable
- Choices:
 - Order p prime or composite, G = H or $G \neq H$, etc.

Constructions in bilinear groups

Non-interactive proof for correctness

 π

Non-interactive zero-knowledge proof

Verifiably encrypted signature

• ElGamal encryption of Boneh-Boyen signature

 $(h^r, y^r s)$ such that $e(vg^m, s) = e(g, h)$

- Statement: y,c,d,v,m
- Witness: r,s such that $c = h^r$, $d = y^r s$, $e(vg^m, s) = e(g, h)$
- Non-interactive zero-knowledge proof convinces verifier but keeps witness r,s private

Applications of non-interactive zeroknowledge proofs

- Verifiable encryption
- Ring signatures
- Group signatures
- Voting
- Digital credentials
- E-cash

Module

- An abelian group (A,+,0) is a Z_p-module if Z_p acts on A such that for all r,s ∈ Z_p x,y ∈ A:
 - -1x = x

$$-(r+s)x = rx + sx$$

$$- r(x+y) = rx + ry$$

$$-$$
 (rs)x = r(sx)

- If p is a prime, then A is a vector space
- Examples:

 \mathbf{Z}_{p} , G, H, T, G², H², T⁴ are \mathbf{Z}_{p} -modules

Modules with bilinear map

- We will be interested in finite Z_p-modules A, B, T with a bilinear map f: A × B → T
- Examples:
 - $e: G \times H \rightarrow T$ $(x,y) \rightarrow e(x,y)$
 - $\text{ exp: } G \times \textbf{Z}_p \to G \qquad (x,y) \to x^y$
 - $\text{ exp: } \mathbf{Z}_p \times H \to H \qquad (x,y) \to y^x$
 - mult: $\mathbf{Z}_{p} \times \mathbf{Z}_{p} \rightarrow \mathbf{Z}_{p}$ (x,y) \rightarrow xy (mod p)

Equations in modules with bilinear map

• Given f: $A \times B \rightarrow T$ we are interested in equations

 $\sum f(a_j, y_j) + \sum f(x_i, b_i) + \sum m_{ij} f(x_i, y_j) = t$

• Examples

- $t = b + yd \pmod{p}$
- $t_G = x^y a^y c^t$
 - $t_{T} = e(t_{G}, ct_{G}^{b})$

Equations in modules with bilinear map

• Given f: $A \times B \rightarrow T$ we are interested in equations

$$\sum f(a_j, y_j) + \sum f(x_i, b_i) + \sum m_{ij} f(x_i, y_j) = t$$

- Define $\mathbf{x} \cdot \mathbf{y} = \sum f(x_i, y_i)$
- Rewrite equations as

$$\mathbf{a} \cdot \mathbf{y} + \mathbf{x} \cdot \mathbf{b} + \mathbf{x} \cdot \mathbf{M}\mathbf{y} = \mathbf{t}$$

Statements and witnesses

- Setup: (p, A, B, T, f)
- Statement: N equations of the form (a_i,b_i,M_i,t_i) with the claim that there exists x, y such that for all i:

$$\mathbf{a}_{i} \cdot \mathbf{y} + \mathbf{x} \cdot \mathbf{b}_{i} + \mathbf{x} \cdot \mathbf{M}_{i} \mathbf{y} = \mathbf{t}_{i}$$

• Witness: $\mathbf{x} \in A^m$, $\mathbf{y} \in B^n$ that satisfy all equations

Non-interactive proofs

- Common reference string: K(p,A,B,T,f) $\rightarrow \sigma$
- Prover: $P(\sigma, \{(\mathbf{a}_i, \mathbf{b}_i, \mathbf{M}_i, t_i)\}_i, \mathbf{x}, \mathbf{y}) \rightarrow \pi$
- Verifier: $V(\sigma, \{(\mathbf{a}_i, \mathbf{b}_i, \mathbf{M}_i, t_i)\}_i, \pi) \rightarrow accept/reject$
- Completeness: Given witness x,y for simultaneous satisfiability of equations the prover outputs accepting proof π
- Soundness:
 - If statement is false, i.e., no such \mathbf{x} , \mathbf{y} exists, then impossible to construct accepting π

Privacy

- Zero-knowledge: Proof π reveals nothing about x, y
- Witness-indistinguishability: Proof π does not reveal which witness x, y out of many possible witnesses was used
- Zero-knowledge implies witness-indistinguishability
- Witness-indistinguishability weaker than ZK
 - May leak partial information (e.g. all witnesses have $x_1 = 0$)
 - May leak entire witness when only one witness exists

Witness-indistinguishability

- Simulated common reference string: S(p,A,B,T,f)→σ
 Computationally indistinguishable from real CRS
- On simulated common reference string σ :
 - Given any satisfiable statement {(a_i,b_i,M_i,t_i)}_i and any two possible witnesses x₀,y₀ or x₁,y₁ the proofs using either witness have identical probability distributions

{
$$P(\sigma, \{(\mathbf{a}_i, \mathbf{b}_i, \mathbf{M}_i, \mathbf{t}_i)\}_i, \mathbf{x}_0, \mathbf{y}_0) \rightarrow \pi \}$$

{ $P(\sigma, \{(\mathbf{a}_i, \mathbf{b}_i, \mathbf{M}_i, \mathbf{t}_i)\}_i, \mathbf{x}_1, \mathbf{y}_1) \rightarrow \pi \}$

Modules and maps defined by setup and CRS

Modules with linear and bilinear maps

$$\begin{array}{cccc} A & \times & B & \rightarrow & T \\ i_C \downarrow \uparrow p_A & i_D \downarrow \uparrow p_B & i_W \downarrow \uparrow p_T \\ C & \times & D & \rightarrow & W \\ & & & F \end{array}$$

- Non-trivial: $p_A(i_C(x)) = x$, $p_B(i_D(y)) = y$, $p_T(i_W(z)) = z$
- Commutative:

$$\begin{aligned} \mathsf{F}(\mathsf{i}_{\mathsf{C}}(\mathsf{x}),\mathsf{i}_{\mathsf{D}}(\mathsf{y})) &= \mathsf{i}_{\mathsf{W}}(\mathsf{f}(\mathsf{x},\mathsf{y})) \\ \mathsf{f}(\mathsf{p}_{\mathsf{A}}(\mathsf{c}),\mathsf{p}_{\mathsf{B}}(\mathsf{d})) &= \mathsf{p}_{\mathsf{T}}(\mathsf{F}(\mathsf{c},\mathsf{d})) \end{aligned}$$

A simple equation

- Want to prove $\exists x \in A \exists y \in B$: f(x,y) = t
- The prover computes $c = i_C(x)$ and $d = i_D(y)$
- The verifier checks $F(c,d) = i_W(t)$
- Completeness:

Soundness

Soundness:

 $\begin{array}{cccc} & f & & \\ p_A(c) & , & p_B(d) & \rightarrow & t & \\ \uparrow p_A & & \uparrow p_B & & \uparrow p_T & \\ c & , & d & \rightarrow & i_W(t) & \\ & & & F & \end{array}$

 Given proof c,d define x = p_A(c) and y = p_B(d) to get a solution to the equation f(x,y) = t

Sets of equations

- Define $i_C(\mathbf{x}) = (i_C(x_1), \dots, i_C(x_m))$ similar for $i_D(\mathbf{y})$
- Define $p_A(\mathbf{c}) = (p_A(c_1), \dots, p_A(c_n))$ similar for $p_B(\mathbf{d})$
- Define **c d** = $F(c_1, d_1) + ... + F(c_n, d_n)$
- Want to prove ∃x∈A^m ∃y∈Bⁿ satisfying N equations of the form a · y + x · b + x · My = t
- Prover with \mathbf{x}, \mathbf{y} can compute $\mathbf{c} = i_C(\mathbf{x})$, $\mathbf{d} = i_D(\mathbf{y})$
- Verifier checks for each equation
 i_C(a) d + c i_D(b) + c Md = i_W(t)

Completeness and soundness

- Completeness comes from linearity, bilinearity and the commutative property F(i_C(x),i_D(y)) = i_W(f(x,y))
- Soundness comes from linearity, bilinearity, nontriviality p_A(i_C(a)) = a, p_B(i_D(b)) = b, p_T(i_W(t)) = t and the commutative property f(p_A(c),p_B(d)) = p_T(F(c,d))

Example

Modules with linear and bilinear maps

- $p_A(c,x) = c^{-\alpha}x$, $p_B(d,y) = d^{-\beta}y$, $p_T(u,v,w,t) = u^{-\alpha\beta}v^{-\alpha}w^{-\beta}t$
- E((c,x),(d,y)) = (e(c,d),e(c,y),e(x,d),e(x,y))
- Commutative:

$$\begin{split} \mathsf{E}(\mathsf{i}_{\mathsf{C}}(\mathsf{x}), \mathsf{i}_{\mathsf{D}}(\mathsf{y})) &= \mathsf{i}_{\mathsf{W}}(\mathsf{e}(\mathsf{x}, \mathsf{y})) \\ \mathsf{e}(\mathsf{p}_{\mathsf{A}}(\mathsf{c}, \mathsf{x}), \mathsf{p}_{\mathsf{B}}(\mathsf{d}, \mathsf{y})) &= \mathsf{p}_{\mathsf{T}}(\mathsf{E}((\mathsf{c}, \mathsf{x}), (\mathsf{d}, \mathsf{y}))) \end{split}$$

Witness-indistinguishable?

- The example has no privacy at all
- Given $i_C(\mathbf{x}) = ((1,x_1),...,(1,x_m))$ and $i_D(\mathbf{y}) = ((1,y_1),...,(1,y_n))$ easy to compute \mathbf{x} , \mathbf{y}
- What if in the general case i_A , i_B , i_W are one-way functions and p_A , p_B , p_T are hard to compute?
- Still not witness-indistinguishable
- Given two witnesses $(\mathbf{x}_0, \mathbf{y}_0)$ and $(\mathbf{x}_1, \mathbf{y}_1)$ it is easy to test whether $i_C(\mathbf{x}) = i_C(\mathbf{x}_0)$ and $i_D(\mathbf{y}) = i_D(\mathbf{y}_0)$

Randomization

- No deterministic witness-indistinguishable proofs
- Need to randomize the maps $\mathbf{x} \rightarrow \mathbf{c}, \, \mathbf{y} \rightarrow \mathbf{d}$
- Common reference string: $u \in C^{\underline{m}}$, $v \in D^{\underline{n}}$ such that $p_A(u) = 0$ and $p_B(v) = 0$
- Compute $\mathbf{c} = i_C(\mathbf{x}) + R\mathbf{u}$ and $\mathbf{d} = i_D(\mathbf{y}) + S\mathbf{v}$ with random $R \leftarrow Mat_{m \times \underline{m}}(\mathbf{Z}_p)$, $S \leftarrow Mat_{n \times \underline{n}}(\mathbf{Z}_p)$
- Observe: $p_A(\mathbf{c}) = p_A(i_C(\mathbf{x}) + R\mathbf{u}) = p_A(i_C(\mathbf{x})) = \mathbf{x}$
- Example: If $u = (g,g^{\alpha})$ then $c = i_C(x)u^r = (g^r,g^{\alpha r}x)$

Soundness

- Common reference string: $u \in C^{\underline{m}}$, $v \in D^{\underline{n}}$ such that $p_A(u) = 0$ and $p_B(v) = 0$
- Compute $\mathbf{c} = i_C(\mathbf{x}) + R\mathbf{u}$ and $\mathbf{d} = i_D(\mathbf{y}) + S\mathbf{v}$
- For each equations a · y + x · b + x · My = t somehow (next slide) compute proof π ∈ D^m, φ ∈ Cⁿ
- Verifier checks $i_{C}(a) \bullet d + c \bullet i_{D}(b) + c \bullet Md = i_{W}(t) + u \bullet \pi + \phi \bullet v$
- Soundness apply projections to get
 a · p_B(d) + p_A(c) · b + p_A(c) · Mp_B(d) = t + 0 + 0
- So $\mathbf{x} = p_A(\mathbf{c})$ and $\mathbf{y} = p_B(\mathbf{d})$ satisfies all equations

Completeness

- Common reference string: $\boldsymbol{u}\!\in\! C^{\underline{m}}$, $\boldsymbol{v}\!\in\! D^{\underline{n}}$
- Compute $\mathbf{c} = i_C(\mathbf{x}) + R\mathbf{u}$ and $\mathbf{d} = i_D(\mathbf{y}) + S\mathbf{v}$ with random $R \leftarrow Mat_{m \times \underline{m}}(\mathbf{Z}_p)$, $S \leftarrow Mat_{n \times \underline{n}}(\mathbf{Z}_p)$
- For each equations $\mathbf{a} \cdot \mathbf{y} + \mathbf{x} \cdot \mathbf{b} + \mathbf{x} \cdot \mathbf{M}\mathbf{y} = t$ can use proof $\phi = S^{T}i_{C}(\mathbf{a}) + S^{T}M^{T}(i_{C}(\mathbf{x})+R\mathbf{u})$, $\pi = R^{T}i_{D}(\mathbf{b}) + R^{T}Mi_{D}(\mathbf{y})$
- Verification always works when x, y satisfy equations
 i_C(a) • d + c • i_D(b) + c • Md
 = i_C(a)•(i_D(y)+Sv) + (i_C(x)+Ru)•i_D(b) + (i_C(x)+Ru)•M(i_D(y)+Sv)
 = i_W(t) + φ • v + u • π

Witness-indistinguishability

- Simulated common reference string hard to distinguish from real common reference string
- Simulated common reference string: $u\!\in\! C^{\underline{m}}$, $v\!\in\! D^{\underline{n}}$ such that $C=\langle u_1,\ldots,u_{\underline{m}}\rangle$ and $D=\langle v_1,\ldots,v_{\underline{n}}\rangle$
- Compute $\mathbf{c} = i_C(\mathbf{x}) + R\mathbf{u}$ and $\mathbf{d} = i_D(\mathbf{y}) + S\mathbf{v}$ with random $R \leftarrow Mat_{m \times \underline{m}}(\mathbf{Z}_p)$, $S \leftarrow Mat_{n \times \underline{n}}(\mathbf{Z}_p)$
- On simulated common reference string
 c and d are perfectly hiding x, y
- Indeed, for any **x**, **y** we get uniformly random **c**, **d**

Example

- Common reference string includes
 - $u_1 = (g, g^{\alpha}), u_2 = (g^{\rho}, g^{\alpha \rho + \delta}), v_1 = (h, h^{\beta}), v_2 = (h^{\sigma}, h^{\beta \sigma + \varepsilon})$
 - Real CRS: $\delta = 0, \epsilon = 0$
 - Simulated CRS: $\delta \neq 0, \epsilon \neq 0$
 - Indistinguishable: DDH in both G and H
- To commit to x pick $(r_1, r_2) \leftarrow Mat_{1 \times 2}(\mathbf{Z}_p)$ and set $c = (c_1, c_2) = i_C(x)u_1^{r_1}u_2^{r_2} = (1, x) (g, g^{\alpha})^{r_1} (g^{\rho}, g^{\alpha\rho+\delta})^{r_2}$ $= (g^{r_1+\rho r_2}, g^{\alpha(r_1+\rho r_2)}g^{\delta r_2}x)$
- On real CRS we get ElGamal encryption of x $-p_A(c) = c_1^{-\alpha}c_2 = x$ when $\delta = 0$
- On simulated CRS perfectly hiding x
 c = (c₁,c₂) random since u₁, u₂ linearly independent

Witness-indistinguishability

- The commitments **c** and **d** do not reveal **x** and **y** when using a simulated common reference string
- But maybe the proofs π , ϕ reveal something
- Let us therefore randomize the proofs as well
- For each equation we will pick π, φ uniformly at random among solutions to verification equation
 i_C(a) d + c i_D(b) + c Md = i_W(t) + u π + φ v
- Given witness x₀, y₀ or x₁, y₁ we have uniformly random c, d and for each equation independent and uniformly random proofs π,φ

Randomizing the proofs

- Given $\mathbf{u}, \mathbf{v}, \mathbf{c}, \mathbf{d}$ and a proof π, ϕ such that $i_C(\mathbf{a}) \bullet \mathbf{d} + \mathbf{c} \bullet i_D(\mathbf{b}) + \mathbf{c} \bullet \mathbf{M} \mathbf{d} = i_W(t) + \mathbf{u} \bullet \pi + \phi \bullet \mathbf{v}$
- Then there are other possible proofs $i_C(a) \bullet d + c \bullet i_D(b) + c \bullet Md = i_W(t) + u \bullet (\pi - v) + (\phi + u) \bullet v$
- More generally for any $T \in Mat_{\underline{n} \times \underline{m}}(Z_p)$ $i_C(a) \bullet d + c \bullet i_D(b) + c \bullet Md = i_W(t) + u \bullet (\pi - T^T v) + (\phi + Tu) \bullet v$
- We may also have $H \in Mat_{\underline{m} \times \underline{n}}(\mathbf{Z}_p)$ such that $\mathbf{u} \bullet H\mathbf{v} = 0$
- Then we have $i_{C}(a) \bullet d + c \bullet i_{D}(b) + c \bullet Md = i_{W}(t) + u \bullet (\pi + Hv) + \phi \bullet v$

Randomizing the proofs

- Given $\mathbf{u}, \mathbf{v}, \mathbf{c}, \mathbf{d}$ and for each equation π, ϕ such that $i_{C}(\mathbf{a}) \bullet \mathbf{d} + \mathbf{c} \bullet i_{D}(\mathbf{b}) + \mathbf{c} \bullet \mathbf{M} \mathbf{d} = i_{W}(t) + \mathbf{u} \bullet \pi + \phi \bullet \mathbf{v}$
- Randomize each proof π, ϕ as $\pi' = \pi - T^T \mathbf{v} + H \mathbf{v} \qquad \phi' = \phi + T \mathbf{u}$
- T is chosen at random from $Mat_{\underline{n}\times\underline{m}}(\mathbf{Z}_p)$
- H chosen at random in $Mat_{\underline{m}\times\underline{n}}(\mathbf{Z}_p)$ such that $\mathbf{u} \cdot \mathbf{H}\mathbf{v} = 0$
- We still have correct verification for each equation $i_W(t) + u \bullet \pi' + \phi \bullet v' = i_W(t) + u \bullet (\pi - T^T v + Hv) + (\phi + Tu) \bullet v$ $= i_W(t) + u \bullet \pi + u \bullet v = i_C(a) \bullet d + c \bullet i_D(b) + c \bullet Md$

Witness-indistinguishability

- On simulation common reference string we now have perfect witness-indistinguishability; given x₀, y₀ or x₁, y₁ satisfying the equations we get the same distribution of commitments c, d and proofs
- Actually, every x, y satisfying all equations gives uniform random distribution on c, d and proofs
- Proof:
 - We already know **c**, **d** are uniformly random
 - For each equation $\phi' = \phi + Tu$ random since $C = \langle u \rangle$
 - For each equation $\pi' = \pi T^T \mathbf{v} + H \mathbf{v}$ uniformly random over π ' satisfying $i_C(\mathbf{a}) \bullet \mathbf{d} + \mathbf{c} \bullet i_D(\mathbf{b}) + \mathbf{c} \bullet M \mathbf{d} = i_W(t) + \mathbf{u} \bullet \pi' + \phi' \bullet \mathbf{v}$ due to H uniformly random over $\mathbf{u} \bullet H \mathbf{v} = 0$ and $D = \langle \mathbf{v} \rangle$

The setup and common reference string

• Setup and common reference string describes non-trivial linear and bilinear maps that commute

t

- Common reference string also describes u, v
- Real CRS: $p_A(u) = 0$, $p_B(v) = 0$
- Simulated CRS: $C = \langle \mathbf{u} \rangle$, $D = \langle \mathbf{v} \rangle$

The proof system

Statement: N equations of the form

 $\mathbf{a} \cdot \mathbf{y} + \mathbf{x} \cdot \mathbf{b} + \mathbf{x} \cdot \mathbf{M}\mathbf{y} = \mathbf{t}$

- Witness: **x**, **y** satisfying all N equations
- Proof: $\mathbf{c} = i_C(\mathbf{x}) + R\mathbf{u}$ and $\mathbf{d} = i_D(\mathbf{y}) + S\mathbf{v}$ For each equation $\mathbf{a} \cdot \mathbf{y} + \mathbf{x} \cdot \mathbf{b} + \mathbf{x} \cdot M\mathbf{y} = t$ set $\mathbf{\phi} = S^T i_C(\mathbf{a}) + S^T M^T (i_C(\mathbf{x}) + R\mathbf{u}) + T\mathbf{u}$ and $\pi = R^T i_D(\mathbf{b}) + R^T M i_D(\mathbf{y}) - T^T \mathbf{v} + H \mathbf{v}$
- Verification: For each eq. a · y + x · b + x · My = t check i_C(a)•d + c•i_D(b) + c•Md = i_W(t) + u•π + φ•v

Size of NIWI proofs		Each equation constant cost. independently of number of public constants and secret variables. NIWI proofs can have sub-linear size compared to statement!			
Cost of each	Subgroup			DDH in	Decision
variable/equation	Decision			both groups	Linear
Variable in G, H or Z _p	1			2	3
Pairing product	1			8	9
Multi-exponentiation	1			6	9
Quadratic in Z _p	1			4	6

Zero-knowledge

- Are the NIWI proofs also zero-knowledge?
- Proof is zero-knowledge if there is a simulator that given the statement can simulate a proof
- Problem: The simulator does not know a witness
- Zero-knowledge in special case where all N equations are of the form a · y + x · b + x · My = 0
- Now the simulator can use $\mathbf{x} = \mathbf{0}$, $\mathbf{y} = \mathbf{0}$ as witness

A more interesting special case

If A = Z_p and T = B then possible to rewrite
 a · y + x · b + x · My = t

as

$$\mathbf{a} \cdot \mathbf{y} + (-1) \cdot \mathbf{t} + \mathbf{x} \cdot \mathbf{b} + \mathbf{x} \cdot \mathbf{M} \mathbf{y} = 0$$

- Using c₀ = i_C(-1) + 0u as a commitment to x₀ = -1 we can give NIWI proofs with witness (x₀,x),y
- Soundness on a real CRS shows that for each equation we have

$$\mathbf{a} \cdot \mathbf{y} - 1 \cdot \mathbf{t} + \mathbf{x} \cdot \mathbf{b} + \mathbf{x} \cdot \mathbf{M} \mathbf{y} = 0$$

A more interesting special case

- Simulated CRS generation: Setup CRS such that $i_c(-1) = i_c(0) + \tau^T u$ for $\tau \in \mathbf{Z}_p^{\underline{m}}$
- Simulating proofs:
 Give NIWI proofs for equations of the form
 a · y x₀·t + x · b + x · My = 0
- In NIWI proofs interpret c₀ = i_C(0) + τ^Tu as a commitment to x₀ = 0, which enables the prover to use the witness x = 0, y = 0 in all equations
- Zero-knowledge: Simulated proofs using x₀ = 0 are uniformly distributed just as real proofs using x₀ = -1 are

Size of NIZK proofs

Cost of each variable/equation	Subgroup Decision	DDH in both groups	Decision Linear
Variable in G, H or \mathbf{Z}_{p}	1	2	3
Pairing product (t=1)	1	8	9
Multi-exponentiation	1	6	9
Quadratic in Z _p	1	4	6

Summary

Modules with commuting linear and bilinear maps

$$\begin{array}{cccc} A & \times & B & \rightarrow & T \\ i_{C} \downarrow \uparrow p_{A} & i_{D} \downarrow \uparrow p_{B} & i_{W} \downarrow \uparrow p_{T} \\ C & \times & D & \rightarrow & W \\ & & & F \end{array}$$

Randomized commitments and proofs in C, D

• Efficient NIWI and NIZK proofs that can be used when constructing pairing-based schemes

Open problems

- Modules with bilinear maps useful elsewhere?
 - Groups: Simplicity, possible to use special properties
 - Modules: Generality, many assumptions at once
 - What is the right level of abstraction?
- Other instantiations of modules with bilinear map?
 - Known constructions based on groups with bilinear map
 - Other ways to construct them?