Pairing-Based Non-interactive Zero-Knowledge Proofs

Jens Groth
University College London

Based on joint work with Amit Sahai

Agenda

- Motivation
- Zero-knowledge proofs useful when designing schemes
- Modules with bilinear maps
- Generalizes groups with pairings
- Non-interactive proofs for modules with bilinear maps
- Witness-indistinguishable
- Zero-knowledge in some cases
- Efficient non-interactive privacy-preserving proofs that can be used in groups with pairings

Groups with bilinear map

- Gen(1^{k}) generates (p,G,H,T,e,g,h)
- G,H,T finite cyclic groups of order p
- Bilinear map e: $\mathrm{G} \times \mathrm{H} \rightarrow \mathrm{T}$
$-\mathrm{e}\left(\mathrm{g}^{\mathrm{a}}, \mathrm{h}^{\mathrm{b}}\right)=\mathrm{e}(\mathrm{g}, \mathrm{h})^{\mathrm{ab}}$
- $\mathrm{G}=\langle\mathrm{g}\rangle, \mathrm{H}=\langle\mathrm{h}\rangle, \mathrm{T}=\langle\mathrm{e}(\mathrm{g}, \mathrm{h})\rangle$
- Deciding group membership, group operations, and bilinear map efficiently computable
- Choices:
- Order p prime or composite, $\mathrm{G}=\mathrm{H}$ or $\mathrm{G} \neq \mathrm{H}$, etc.

Constructions in bilinear groups

Non-interactive proof for correctness

Yes, here is a proof.

Are the constructions correct? I do not know your secret x, y.
$t=b+y d(\bmod p)$
$t_{G}=x^{y} a^{y} c^{t}$
$\mathrm{t}_{\mathrm{T}}=\mathrm{e}\left(\mathrm{t}_{\mathrm{G}}, \mathrm{Ct}_{\mathrm{G}}{ }^{\mathrm{b}}\right)$

$\longrightarrow \pi$

Non-interactive zero-knowledge proof

Common reference string Statement

Zero-knowledge: Nothing but truth revealed

Verifiably encrypted signature

- ElGamal encryption of Boneh-Boyen signature
$\left(h^{r}, y^{\gamma s}\right)$ such that $e\left(\mathrm{vg}^{m}, s\right)=e(g, h)$
- Statement: y,c,d,v,m
- Witness: r, s such that $c=h^{r}, d=y^{r} s, e\left(v^{m}, s\right)=e(g, h)$
- Non-interactive zero-knowledge proof convinces verifier but keeps witness r,s private

Applications of non-interactive zeroknowledge proofs

- Verifiable encryption
- Ring signatures
- Group signatures
- Voting
- Digital credentials
- E-cash

Module

- An abelian group $(A,+, 0)$ is a \mathbf{Z}_{p}-module if \mathbf{Z}_{p} acts on A such that for all $r, s \in \mathbf{Z}_{p} x, y \in A$:

$$
\begin{aligned}
& -1 x=x \\
& -(r+s) x=r x+s x \\
& -r(x+y)=r x+r y \\
& -(r s) x=r(s x)
\end{aligned}
$$

- If p is a prime, then A is a vector space
- Examples:
$\mathbf{Z}_{\mathrm{p}}, \mathrm{G}, \mathrm{H}, \mathrm{T}, \mathrm{G}^{2}, \mathrm{H}^{2}, \mathrm{~T}^{4}$ are \mathbf{Z}_{p}-modules

Modules with bilinear map

- We will be interested in finite \mathbf{Z}_{p}-modules $\mathrm{A}, \mathrm{B}, \mathrm{T}$ with a bilinear map $f: A \times B \rightarrow T$
- Examples:

$$
\begin{array}{ll}
-\mathrm{e}: G \times H \rightarrow T & (x, y) \rightarrow e(x, y) \\
-\exp : G \times \mathbf{Z}_{p} \rightarrow G & (x, y) \rightarrow x^{y} \\
-\exp : \mathbf{Z}_{p} \times H \rightarrow H & (x, y) \rightarrow y^{x} \\
- \text { mult: } \mathbf{Z}_{\mathrm{p}} \times \mathbf{Z}_{p} \rightarrow \mathbf{Z}_{p} & (x, y) \rightarrow x y(\bmod p)
\end{array}
$$

Equations in modules with bilinear map

- Given $\mathrm{f}: \mathrm{A} \times \mathrm{B} \rightarrow \mathrm{T}$ we are interested in equations

$$
\sum \mathrm{f}\left(\mathrm{a}_{\mathrm{j}}, \mathrm{y}_{\mathrm{j}}\right)+\sum \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{~b}_{\mathrm{i}}\right)+\sum \mathrm{m}_{\mathrm{ij}} \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}\right)=\mathrm{t}
$$

- Examples

Equations in modules with bilinear map

- Given $\mathrm{f}: \mathrm{A} \times \mathrm{B} \rightarrow \mathrm{T}$ we are interested in equations

$$
\sum \mathrm{f}\left(\mathrm{a}_{\mathrm{j}}, \mathrm{y}_{\mathrm{j}}\right)+\sum \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{~b}_{\mathrm{i}}\right)+\sum \mathrm{m}_{\mathrm{ij}} \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}\right)=\mathrm{t}
$$

- Define $\mathbf{x} \cdot \mathbf{y}=\sum \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$
- Rewrite equations as

$$
a \cdot y+x \cdot b+x \cdot M y=t
$$

Statements and witnesses

- Setup: (p, A, B, T, f)
- Statement: N equations of the form $\left(\mathbf{a}_{\mathrm{i}}, \mathbf{b}_{\mathrm{i}}, \mathrm{M}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right)$ with the claim that there exists \mathbf{x}, \mathbf{y} such that for all i :

$$
a_{i} \cdot \mathbf{y}+x \cdot b_{i}+x \cdot M_{i} y=t_{i}
$$

- Witness: $\mathbf{x} \in A^{m}, \mathbf{y} \in \mathrm{~B}^{n}$ that satisfy all equations

Non-interactive proofs

- Common reference string: $\mathrm{K}(\mathrm{p}, \mathrm{A}, \mathrm{B}, \mathrm{T}, \mathrm{f}) \rightarrow \sigma$
- Prover: $\mathrm{P}\left(\sigma,\left\{\left(\mathbf{a}_{\mathbf{i}}, \mathbf{b}_{\mathrm{i}}, \mathrm{M}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right)\right\}_{\mathrm{i}}, \mathbf{x}, \mathbf{y}\right) \rightarrow \pi$
- Verifier: $\mathrm{V}\left(\sigma,\left\{\left(\mathbf{a}_{\mathrm{i}}, \mathbf{b}_{\mathrm{i}}, \mathrm{M}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right)\right\}_{\mathrm{i}}, \pi\right) \rightarrow$ accept/reject
- Completeness:

Given witness \mathbf{x}, \mathbf{y} for simultaneous satisfiability of equations the prover outputs accepting proof π

- Soundness:

If statement is false, i.e., no such \mathbf{x}, \mathbf{y} exists, then impossible to construct accepting π

Privacy

- Zero-knowledge:

Proof π reveals nothing about \mathbf{x}, \mathbf{y}

- Witness-indistinguishability:

Proof π does not reveal which witness \mathbf{x}, \mathbf{y} out of many possible witnesses was used

- Zero-knowledge implies witness-indistinguishability
- Witness-indistinguishability weaker than ZK
- May leak partial information (e.g. all witnesses have $x_{1}=0$)
- May leak entire witness when only one witness exists

Witness-indistinguishability

- Simulated common reference string: $\mathrm{S}(\mathrm{p}, \mathrm{A}, \mathrm{B}, \mathrm{T}, \mathrm{f}) \rightarrow \sigma$
- Computationally indistinguishable from real CRS
- On simulated common reference string σ :
- Given any satisfiable statement $\left\{\left(\mathbf{a}_{\mathrm{i}}, \mathbf{b}_{\mathrm{i}}, \mathrm{M}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right)\right\}_{\mathrm{i}}$ and any two possible witnesses $\mathbf{x}_{0}, \mathbf{y}_{0}$ or $\mathbf{x}_{1}, \mathbf{y}_{1}$ the proofs using either witness have identical probability distributions

$$
\begin{array}{ll}
& \left\{P\left(\sigma,\left\{\left(\mathbf{a}_{\mathrm{i}}, \mathbf{b}_{\mathrm{i}}, \mathrm{M}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right)\right\}_{\mathrm{i}}, \mathbf{x}_{0}, \mathbf{y}_{0}\right) \rightarrow \pi\right\} \\
=\quad & \left\{\mathrm{P}\left(\sigma,\left\{\left(\mathbf{a}_{\mathrm{i}}, \mathbf{b}_{\mathrm{i}}, \mathrm{M}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right)\right\}_{\mathrm{i}}, \mathbf{x}_{1}, \mathbf{y}_{1}\right) \rightarrow \pi\right\}
\end{array}
$$

Modules and maps defined by setup and CRS

- Modules with linear and bilinear maps

$$
\begin{array}{ccccc}
A & \times & B & \rightarrow & T \\
\mathrm{i}_{C} \downarrow \uparrow \rho_{A} & i_{D} \downarrow \uparrow \rho_{B} & \mathrm{i}_{W} \downarrow \uparrow \rho_{T} \\
\mathrm{C} & \times & \mathrm{D} & \rightarrow & \mathrm{~W}
\end{array}
$$

- Non-trivial: $\mathrm{p}_{\mathrm{A}}\left(\mathrm{i}_{\mathrm{C}}(\mathrm{x})\right)=\mathrm{x}, \mathrm{p}_{\mathrm{B}}\left(\mathrm{i}_{\mathrm{D}}(\mathrm{y})\right)=\mathrm{y}, \mathrm{p}_{\mathrm{T}}\left(\mathrm{i}_{\mathrm{W}}(\mathrm{z})\right)=\mathrm{z}$
- Commutative:

$$
\begin{aligned}
& \mathrm{F}\left(\mathrm{i}_{\mathrm{C}}(\mathrm{x}), \mathrm{i}_{\mathrm{D}}(\mathrm{y})\right)=\mathrm{i}_{\mathrm{W}}(\mathrm{f}(\mathrm{x}, \mathrm{y})) \\
& \mathrm{f}\left(\mathrm{p}_{\mathrm{A}}(\mathrm{c}), \mathrm{p}_{\mathrm{B}}(\mathrm{~d})\right)=\mathrm{p}_{\mathrm{T}}(\mathrm{~F}(\mathrm{c}, \mathrm{~d}))
\end{aligned}
$$

A simple equation

- Want to prove $\exists x \in A \exists y \in B: f(x, y)=t$
- The prover computes $c=i_{c}(x)$ and $d=i_{D}(y)$
- The verifier checks $\mathrm{F}(\mathrm{c}, \mathrm{d})=\mathrm{i}_{\mathrm{w}}(\mathrm{t})$
- Completeness:

$$
\begin{array}{ccccc}
x & , & y & \rightarrow & \mathrm{t} \\
\mathrm{i}_{\mathrm{C}} \downarrow & & \mathrm{i}_{\mathrm{D}} \downarrow & & \mathrm{i}_{\mathrm{w}} \downarrow \\
\mathrm{i}_{\mathrm{C}}(\mathrm{x}) & , & \mathrm{i}_{\mathrm{D}}(\mathrm{y}) & \rightarrow & \mathrm{i}_{\mathrm{w}}(\mathrm{t})
\end{array}
$$

Soundness

- Soundness:

- Given proof c, d define $x=p_{A}(c)$ and $y=p_{B}(d)$ to get a solution to the equation $f(x, y)=t$

Sets of equations

- Define $i_{C}(\mathbf{x})=\left(i_{C}\left(x_{1}\right), \ldots, i_{C}\left(x_{m}\right)\right) \quad$ similar for $i_{D}(\mathbf{y})$
- Define $p_{A}(\mathbf{c})=\left(p_{A}\left(c_{1}\right), \ldots, p_{A}\left(c_{n}\right)\right)$ similar for $p_{B}(d)$
- Define $\mathbf{c} \bullet \mathbf{d}=\mathrm{F}\left(\mathrm{c}_{1}, \mathrm{~d}_{1}\right)+\ldots+\mathrm{F}\left(\mathrm{c}_{\mathrm{n}}, \mathrm{d}_{\mathrm{n}}\right)$
- Want to prove $\exists \mathbf{x} \in A^{m} \exists \mathbf{y} \in B^{n}$ satisfying N equations of the form $\mathbf{a} \cdot \mathbf{y}+\mathbf{x} \cdot \mathbf{b}+\mathbf{x} \cdot \mathrm{My}=\mathrm{t}$
- Prover with \mathbf{x}, \mathbf{y} can compute $\mathbf{c}=\mathrm{i}_{\mathrm{C}}(\mathbf{x}), \mathbf{d}=\mathrm{i}_{\mathrm{D}}(\mathbf{y})$
- Verifier checks for each equation

$$
\mathrm{i}_{\mathrm{C}}(\mathbf{a}) \bullet \mathbf{d}+\mathbf{c} \bullet \mathrm{i}_{\mathrm{D}}(\mathbf{b})+\mathbf{c} \bullet \mathrm{Md}=\mathrm{i}_{\mathrm{w}}(\mathrm{t})
$$

Completeness and soundness

$$
\begin{array}{ccccc}
\mathbf{a}, \mathbf{x} & & \mathbf{b}, \mathbf{y} & \cdot & \mathrm{t} \\
\mathrm{~A} & \times & \mathrm{B} & \rightarrow & \mathrm{~T} \\
\mathrm{i}_{\mathrm{C}} \downarrow \uparrow \mathrm{p}_{\mathrm{A}} & \mathrm{i}_{\mathrm{D}} \downarrow \uparrow \mathrm{p}_{\mathrm{B}} & \mathrm{i}_{\mathrm{W}} \downarrow \uparrow \mathrm{p}_{\mathrm{T}} \\
\mathrm{C} & \times & \mathrm{D} & \rightarrow & \mathrm{~W} \\
\mathrm{i}_{\mathrm{C}}(\mathbf{a}), \mathbf{c} & & \mathrm{i}_{\mathrm{D}}(\mathbf{b}), \mathbf{d} & \bullet & \mathrm{i}_{\mathrm{W}}(\mathrm{t})
\end{array}
$$

- Completeness comes from linearity, bilinearity and the commutative property $\mathrm{F}\left(\mathrm{i}_{\mathrm{C}}(\mathrm{x}), \mathrm{i}_{\mathrm{D}}(\mathrm{y})\right)=\mathrm{i}_{\mathrm{w}}(\mathrm{f}(\mathrm{x}, \mathrm{y}))$
- Soundness comes from linearity, bilinearity, nontriviality $\mathrm{p}_{\mathrm{A}}\left(\mathrm{i}_{\mathrm{C}}(\mathrm{a})\right)=\mathrm{a}, \mathrm{p}_{\mathrm{B}}\left(\mathrm{i}_{\mathrm{D}}(\mathrm{b})\right)=\mathrm{b}, \mathrm{p}_{\mathrm{T}}\left(\mathrm{i}_{\mathrm{W}}(\mathrm{t})\right)=\mathrm{t}$ and the commutative property $f\left(p_{A}(c), p_{B}(d)\right)=p_{T}(F(c, d))$

Example

- Modules with linear and bilinear maps

\[

\]

- $p_{A}(c, x)=c^{-\alpha} x, p_{B}(d, y)=d^{-\beta} y, p_{T}(u, v, w, t)=u^{-\alpha \beta} v^{-\alpha} w^{-\beta} t$
- $E((c, x),(d, y))=(e(c, d), e(c, y), e(x, d), e(x, y))$
- Commutative:

$$
\begin{aligned}
& E\left(i_{c}(x), i_{D}(y)\right)=i_{w}(e(x, y)) \\
& e\left(p_{A}(c, x), p_{B}(d, y)\right)=p_{T}(E((c, x),(d, y)))
\end{aligned}
$$

Witness-indistinguishable?

- The example has no privacy at all
- Given $\mathrm{i}_{\mathrm{C}}(\mathbf{x})=\left(\left(1, \mathrm{x}_{1}\right), \ldots,\left(1, \mathrm{x}_{\mathrm{m}}\right)\right)$ and $\mathrm{i}_{\mathrm{D}}(\mathbf{y})=$ $\left(\left(1, y_{1}\right), \ldots,\left(1, y_{n}\right)\right)$ easy to compute \mathbf{x}, \mathbf{y}
- What if in the general case i_{A}, i_{B}, i_{W} are one-way functions and p_{A}, p_{B}, p_{T} are hard to compute?
- Still not witness-indistinguishable
- Given two witnesses $\left(\mathbf{x}_{0}, \mathbf{y}_{0}\right)$ and $\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right)$ it is easy to test whether $\mathrm{i}_{\mathrm{C}}(\mathbf{x})=\mathrm{i}_{\mathrm{C}}\left(\mathbf{x}_{0}\right)$ and $\mathrm{i}_{\mathrm{D}}(\mathbf{y})=\mathrm{i}_{\mathrm{D}}\left(\mathbf{y}_{0}\right)$

Randomization

- No deterministic witness-indistinguishable proofs
- Need to randomize the maps $\mathbf{x} \rightarrow \mathbf{c}, \mathbf{y} \rightarrow \mathbf{d}$
- Common reference string: $\mathbf{u} \in \mathrm{Cm}, \mathbf{v} \in \mathrm{D}$ n such that $p_{A}(\mathbf{u})=\mathbf{0}$ and $p_{B}(\mathbf{v})=\mathbf{0}$
- Compute $\mathbf{c}=\mathrm{i}_{\mathrm{C}}(\mathbf{x})+\mathrm{Ru}$ and $\mathbf{d}=\mathrm{i}_{\mathrm{D}}(\mathbf{y})+\mathrm{Sv}$ with random $R \leftarrow \operatorname{Mat}_{\mathrm{m} \times \underline{m}}\left(\mathbf{Z}_{\mathrm{p}}\right), \mathrm{S} \leftarrow \operatorname{Mat}_{\mathrm{n} \times \mathrm{n}}\left(\mathbf{Z}_{\mathrm{p}}\right)$
- Observe: $\mathrm{p}_{\mathrm{A}}(\mathbf{c})=\mathrm{p}_{\mathrm{A}}\left(\mathrm{i}_{\mathrm{C}}(\mathbf{x})+\mathrm{Ru}\right)=\mathrm{p}_{\mathrm{A}}\left(\mathrm{i}_{\mathrm{C}}(\mathbf{x})\right)=\mathbf{x}$
- Example:If $u=\left(g, g^{\alpha}\right)$ then $c=i_{C}(x) u^{r}=\left(g^{r}, g^{\alpha r} x\right)$

Soundness

- Common reference string: $\mathbf{u} \in \mathrm{C}$ m, $\mathbf{v} \in \mathrm{D} \underline{n}$ such that $p_{A}(\mathbf{u})=\mathbf{0}$ and $p_{B}(\mathbf{v})=\mathbf{0}$
- Compute $\mathbf{c}=\mathrm{i}_{\mathrm{C}}(\mathbf{x})+\mathrm{Ru}$ and $\mathbf{d}=\mathrm{i}_{\mathrm{D}}(\mathbf{y})+\mathrm{Sv}$
- For each equations $\mathbf{a} \cdot \mathbf{y}+\mathbf{x} \cdot \mathbf{b}+\mathbf{x} \cdot \mathrm{My}=\mathrm{t}$ somehow (next slide) compute proof $\pi \in \mathrm{D}$,,$\phi \in \mathrm{C}$ n
- Verifier checks

$$
\mathrm{i}_{\mathrm{C}}(\mathbf{a}) \bullet \mathbf{d}+\mathbf{c} \bullet \mathrm{i}_{\mathrm{D}}(\mathbf{b})+\mathbf{c} \bullet \mathrm{Md}=\mathrm{i}_{\mathrm{w}}(\mathrm{t})+\mathbf{u} \bullet \pi+\phi \bullet \mathbf{v}
$$

- Soundness - apply projections to get

$$
\mathbf{a} \cdot \mathrm{p}_{\mathrm{B}}(\mathbf{d})+\mathrm{p}_{\mathrm{A}}(\mathbf{c}) \cdot \mathbf{b}+\mathrm{p}_{\mathrm{A}}(\mathbf{c}) \cdot \mathrm{Mp} \mathrm{p}_{\mathrm{B}}(\mathbf{d})=\mathrm{t}+0+0
$$

- So $\mathbf{x}=p_{A}(c)$ and $\mathbf{y}=p_{B}(\mathbf{d})$ satisfies all equations

Completeness

- Common reference string: $\mathbf{u} \in \mathrm{C} \underline{\underline{m}}, \mathbf{v} \in \mathrm{D}^{\mathrm{n}}$
- Compute $\mathbf{c}=\mathrm{i}_{\mathrm{C}}(\mathbf{x})+\mathrm{Ru}$ and $\mathbf{d}=\mathrm{i}_{\mathrm{D}}(\mathbf{y})+\mathrm{Sv}$ with random $R \leftarrow \operatorname{Mat}_{m \times \underline{m}}\left(\mathbf{Z}_{p}\right), S \leftarrow \operatorname{Mat}_{\mathrm{n} \times \underline{n}}\left(\mathbf{Z}_{p}\right)$
- For each equations $\mathbf{a} \cdot \mathbf{y}+\mathbf{x} \cdot \mathbf{b}+\mathbf{x} \cdot \mathrm{My}=\mathrm{t}$ can use proof $\phi=S^{\top} i_{C}(\mathbf{a})+S^{\top} M^{\top}\left(i_{C}(\mathbf{x})+R \mathbf{u}\right), \pi=R^{\top} \mathrm{i}_{\mathrm{D}}(\mathbf{b})+\mathrm{R}^{\top} \mathrm{Mi}_{\mathrm{D}}(\mathbf{y})$
- Verification always works when \mathbf{x}, \mathbf{y} satisfy equations $\mathrm{i}_{\mathrm{C}}(\mathbf{a}) \bullet \mathbf{d}+\mathbf{c} \bullet \mathrm{i}_{\mathrm{D}}(\mathbf{b})+\mathbf{c} \bullet M \mathbf{d}$
$=\mathrm{i}_{\mathrm{C}}(\mathbf{a}) \bullet\left(\mathrm{i}_{\mathrm{D}}(\mathbf{y})+\mathrm{Sv}\right)+\left(\mathrm{i}_{\mathrm{C}}(\mathbf{x})+\mathrm{Ru}\right) \bullet \mathrm{i}_{\mathrm{D}}(\mathbf{b})+\left(\mathrm{i}_{\mathrm{C}}(\mathbf{x})+\mathrm{Ru}\right) \cdot \mathrm{M}\left(\mathrm{i}_{\mathrm{D}}(\mathbf{y})+\mathrm{Sv}\right)$
$=i_{w}(\mathrm{t})+\phi \bullet \mathbf{v}+\mathbf{u} \bullet \pi$

Witness-indistinguishability

- Simulated common reference string hard to distinguish from real common reference string
- Simulated common reference string: $\mathbf{u} \in \mathrm{Cm}, \mathbf{v} \in \mathrm{D}^{\mathrm{n}}$ such that $C=\left\langle u_{1}, \ldots, u_{\underline{m}}\right\rangle$ and $D=\left\langle v_{1}, \ldots, v_{\underline{n}}\right\rangle$
- Compute $\mathbf{c}=\mathrm{i}_{\mathrm{C}}(\mathbf{x})+\mathrm{Ru}$ and $\mathbf{d}=\mathrm{i}_{\mathrm{D}}(\mathbf{y})+\mathrm{Sv}$ with random $R \leftarrow \operatorname{Mat}_{m \times \underline{m}}\left(\mathbf{Z}_{p}\right), S \leftarrow \operatorname{Mat}_{n \times \underline{n}}\left(\mathbf{Z}_{p}\right)$
- On simulated common reference string \mathbf{c} and \mathbf{d} are perfectly hiding \mathbf{x}, \mathbf{y}
- Indeed, for any \mathbf{x}, \mathbf{y} we get uniformly random \mathbf{c}, \mathbf{d}

Example

- Common reference string includes

$$
u_{1}=\left(g, g^{\alpha}\right), u_{2}=\left(g^{\rho}, g^{\alpha \rho+\delta}\right), v_{1}=\left(h, h^{\beta}\right), v_{2}=\left(h^{\sigma}, h^{\beta \sigma+\varepsilon}\right)
$$

- Real CRS:
$\delta=0, \varepsilon=0$
- Simulated CRS:
$\delta \neq 0, \varepsilon \neq 0$
- Indistinguishable: DDH in both G and H
- To commit to x pick $\left(r_{1}, r_{2}\right) \leftarrow \operatorname{Mat}_{1 \times 2}\left(\mathbf{Z}_{p}\right)$ and set

$$
\begin{aligned}
\mathrm{c}=\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right) & =\mathrm{i}_{\mathrm{C}}(\mathrm{x}) \mathrm{u}_{1}{ }^{r_{1}} \mathrm{u}_{2}{ }^{r_{2}}=(1, x)\left(\mathrm{g}_{2}, \mathrm{~g}^{\alpha}\right)^{r_{1}}\left(g^{\rho}, g^{\alpha \rho+\delta}\right)^{r_{2}} \\
& =\left(g^{\left.r_{1}+\rho r_{2}, g^{\alpha\left(r_{1}+\rho r_{2}\right.}\right)} g^{\delta r_{2}} x\right)
\end{aligned}
$$

- On real CRS we get ElGamal encryption of x
$-p_{A}(c)=c_{1}{ }^{-\alpha} c_{2}=x \quad$ when $\delta=0$
- On simulated CRS perfectly hiding x
$-c=\left(c_{1}, c_{2}\right)$ random since u_{1}, u_{2} linearly independent

Witness-indistinguishability

- The commitments \mathbf{c} and \mathbf{d} do not reveal \mathbf{x} and \mathbf{y} when using a simulated common reference string
- But maybe the proofs π, ϕ reveal something
- Let us therefore randomize the proofs as well
- For each equation we will pick π, ϕ uniformly at random among solutions to verification equation $\mathrm{i}_{\mathrm{C}}(\mathbf{a}) \bullet \mathbf{d}+\mathbf{c} \bullet \mathrm{i}_{\mathrm{D}}(\mathbf{b})+\mathbf{c} \bullet \mathrm{Md}=\mathrm{i}_{\mathrm{w}}(\mathrm{t})+\mathbf{u} \bullet \pi+\phi \bullet \mathbf{v}$
- Given witness $\mathbf{x}_{0}, \mathbf{y}_{0}$ or $\mathbf{x}_{1}, \mathbf{y}_{1}$ we have uniformly random \mathbf{c}, \mathbf{d} and for each equation independent and uniformly random proofs π, ϕ

Randomizing the proofs

- Given $\mathbf{u}, \mathbf{v}, \mathbf{c}, \mathbf{d}$ and a proof π, ϕ such that $\mathrm{i}_{\mathrm{C}}(\mathbf{a}) \bullet \mathbf{d}+\mathbf{c} \bullet \mathrm{i}_{\mathrm{D}}(\mathbf{b})+\mathbf{c} \bullet \mathbf{M d}=\mathrm{i}_{\mathrm{W}}(\mathrm{t})+\mathbf{u} \bullet \pi+\phi \bullet \mathbf{v}$
- Then there are other possible proofs
$\mathrm{i}_{\mathrm{C}}(\mathbf{a}) \bullet \mathbf{d}+\mathbf{c} \mathrm{i}_{\mathrm{D}}(\mathbf{b})+\mathbf{c} \bullet \mathrm{Md}=\mathrm{i}_{\mathrm{w}}(\mathrm{t})+\mathbf{u \bullet}(\pi-\mathbf{v})+(\phi+\mathbf{u}) \bullet \mathbf{v}$
- More generally for any $T \in \operatorname{Mat}_{\underline{n} \times \underline{m}}\left(\mathbf{Z}_{p}\right)$
$\mathrm{i}_{\mathrm{C}}(\mathbf{a}) \bullet \mathbf{d}+\mathbf{c} \bullet \mathrm{i}_{\mathrm{D}}(\mathbf{b})+\mathbf{c} \bullet \mathbf{M d}=\mathrm{i}_{\mathrm{w}}(\mathrm{t})+\mathbf{u} \bullet\left(\pi-\mathrm{T}^{\top} \mathbf{v}\right)+(\phi+\mathbf{T} \mathbf{u}) \bullet \mathbf{v}$
- We may also have $\mathrm{H} \in \mathrm{Mat}_{\underline{\mathrm{m} \times n}}\left(\mathbf{Z}_{\mathrm{p}}\right)$ such that $\mathbf{u \bullet H v}=0$
- Then we have

$$
\mathrm{i}_{\mathrm{C}}(\mathbf{a}) \bullet \mathbf{d}+\mathbf{c} \bullet \mathrm{i}_{\mathrm{D}}(\mathbf{b})+\mathbf{c} \bullet \mathrm{Md}=\mathrm{i}_{\mathrm{W}}(\mathrm{t})+\mathbf{u} \bullet(\pi+\mathrm{H} \mathbf{v})+\phi \bullet \mathbf{v}
$$

Randomizing the proofs

- Given $\mathbf{u}, \mathbf{v}, \mathbf{c}, \mathbf{d}$ and for each equation π, ϕ such that

$$
\mathrm{i}_{\mathrm{c}}(\mathbf{a}) \bullet \mathbf{d}+\mathbf{c} \bullet \mathrm{i}_{D}(\mathbf{b})+\mathbf{c} \bullet \mathrm{Md}=\mathrm{i}_{\mathrm{w}}(\mathrm{t})+\mathbf{u} \bullet \pi+\phi \bullet v
$$

- Randomize each proof π, ϕ as

$$
\pi^{\prime}=\pi-\mathrm{T}^{\top} \mathbf{v}+\dot{H} \mathbf{v} \quad \phi^{\prime}=\phi+\mathrm{T} \mathbf{u}
$$

- T is chosen at random from $\operatorname{Mat}_{\underline{n} \times m}\left(\mathbf{Z}_{\mathrm{p}}\right)$
- H chosen at random in Mat $_{\underline{m} \times \underline{n}}\left(\mathbf{Z}_{\mathrm{p}}\right)$ such that $\mathbf{u \bullet H \mathbf { v } = 0}$
- We still have correct verification for each equation $\mathrm{i}_{w}(\mathrm{t})+\mathbf{u} \bullet \pi^{\prime}+\phi \bullet \mathbf{v}^{\prime}=\mathrm{i}_{\mathrm{w}}(\mathrm{t})+\mathbf{u} \bullet\left(\pi-\mathrm{T}^{\top} \mathbf{v}+\mathrm{H} \mathbf{v}\right)+(\phi+\mathrm{T} \mathbf{u}) \bullet \mathbf{v}$
$=i_{w}(\mathrm{t})+\mathbf{u} \bullet \pi+\mathbf{u} \bullet v=i_{C}(\mathbf{a}) \bullet d+\mathbf{c} \bullet i_{D}(\mathbf{b})+\mathbf{c} \bullet M d$

Witness-indistinguishability

- On simulation common reference string we now have perfect witness-indistinguishability; given \mathbf{x}_{0}, \mathbf{y}_{0} or $\mathbf{x}_{1}, \mathbf{y}_{1}$ satisfying the equations we get the same distribution of commitments \mathbf{c}, \mathbf{d} and proofs
- Actually, every \mathbf{x}, \mathbf{y} satisfying all equations gives uniform random distribution on \mathbf{c}, \mathbf{d} and proofs
- Proof:
- We already know c, d are uniformly random
- For each equation $\phi^{\prime}=\phi+$ Tu random since $\mathrm{C}=\langle\mathbf{u}\rangle$
- For each equation $\pi^{\prime}=\pi-\mathrm{T}^{\top} \mathbf{v}+\mathrm{Hv}$ uniformly random over π^{\prime} satisfying $\mathrm{i}_{\mathrm{C}}(\mathbf{a}) \cdot \mathbf{d}+\mathbf{c} \bullet \mathrm{i}_{\mathrm{D}}(\mathbf{b})+\mathbf{c} \bullet \mathrm{Md}=\mathrm{i}_{\mathrm{W}}(\mathrm{t})+\mathbf{u} \bullet \pi^{\prime}+\phi^{\prime} \bullet v$ due to H uniformly random over $\mathbf{u} \bullet \mathrm{Hv}=0$ and $\mathrm{D}=\langle\mathbf{v}\rangle$

The setup and common reference string

- Setup and common reference string describes non-trivial linear and bilinear maps that commute

\[

\]

- Common reference string also describes \mathbf{u}, \mathbf{v}
- Real CRS: $p_{A}(\mathbf{u})=\mathbf{0}, p_{B}(v)=\mathbf{0}$
- Simulated CRS: $\mathrm{C}=\langle\mathbf{u}\rangle, \mathrm{D}=\langle\mathbf{v}\rangle$

The proof system

- Statement: N equations of the form

$$
a \cdot y+x \cdot b+x \cdot M y=t
$$

- Witness: \mathbf{x}, \mathbf{y} satisfying all N equations
- Proof: $\mathbf{c}=\mathrm{i}_{\mathrm{C}}(\mathbf{x})+\mathrm{Ru}$ and $\mathbf{d}=\mathrm{i}_{\mathrm{D}}(\mathbf{y})+\mathrm{Sv}$ For each equation $\mathbf{a} \cdot \mathbf{y}+\mathbf{x} \cdot \mathbf{b}+\mathbf{x} \cdot \mathrm{My}=\mathrm{t}$ set $\quad \phi=S^{\top} i_{C}(\mathbf{a})+S^{\top} M^{\top}\left(i_{C}(\mathbf{x})+R \mathbf{u}\right)+T \mathbf{u}$ and $\pi=R^{\top} i_{D}(\mathbf{b})+R^{\top} M i_{D}(\mathbf{y})-T^{\top} \mathbf{v}+H \mathbf{v}$
- Verification: For each eq. $\mathbf{a} \cdot \mathbf{y}+\mathbf{x} \cdot \mathbf{b}+\mathbf{x} \cdot \mathbf{M y}=\mathrm{t}$ check $\mathrm{i}_{\mathrm{C}}(\mathbf{a}) \bullet \mathbf{d}+\mathbf{c} \bullet \mathrm{i}_{\mathrm{D}}(\mathbf{b})+\mathbf{c} \bullet \mathrm{Md}=\mathrm{i}_{\mathrm{w}}(\mathrm{t})+\mathrm{u} \bullet \pi+\phi \bullet v$

Size of NIWI proofs

Each equation constant cost. independently of number of public constants and secret variables.
NIWI proofs can have sub-linear size compared to statement!

Cost of each variable/equation	Subgroup Decision	DDH in both groups	Decision Linear
Variable in G, H or \mathbf{Z}_{p}	1	2	3
Pairing product	1	8	9
Multi-exponentiation	1	6	9
Quadratic in \mathbf{Z}_{p}	1	4	6

Zero-knowledge

- Are the NIWI proofs also zero-knowledge?
- Proof is zero-knowledge if there is a simulator that given the statement can simulate a proof
- Problem: The simulator does not know a witness
- Zero-knowledge in special case where all N equations are of the form $\mathbf{a} \cdot \mathbf{y}+\mathbf{x} \cdot \mathbf{b}+\mathbf{x} \cdot \mathrm{My}=0$
- Now the simulator can use $\mathbf{x}=\mathbf{0}, \mathbf{y}=\mathbf{0}$ as witness

A more interesting special case

- If $\mathrm{A}=\mathbf{Z}_{\mathrm{p}}$ and $\mathrm{T}=\mathrm{B}$ then possible to rewrite

$$
\mathbf{a} \cdot \mathbf{y}+\mathbf{x} \cdot \mathbf{b}+\mathbf{x} \cdot M \mathbf{y}=t
$$

as

$$
\mathbf{a} \cdot \mathbf{y}+(-1) \cdot t+\mathbf{x} \cdot \mathbf{b}+\mathbf{x} \cdot M \mathbf{y}=0
$$

- Using $\mathrm{c}_{0}=\mathrm{i}_{\mathrm{c}}(-1)+0 \mathrm{u}$ as a commitment to $\mathrm{x}_{0}=-1$ we can give NIWI proofs with witness ($\mathrm{x}_{0}, \mathbf{x}$), \mathbf{y}
- Soundness on a real CRS shows that for each equation we have

$$
\mathbf{a} \cdot \mathbf{y}-1 \cdot t+x \cdot \mathbf{b}+x \cdot M y=0
$$

A more interesting special case

- Simulated CRS generation:

Setup CRS such that $\mathrm{i}_{\mathrm{C}}(-1)=\mathrm{i}_{\mathrm{C}}(0)+\tau^{\top} \mathbf{u}$ for $\tau \in \mathbf{Z}_{\mathrm{p}}{ }^{m}$

- Simulating proofs:

Give NIWI proofs for equations of the form

$$
a \cdot y-x_{0} \cdot t+x \cdot b+x \cdot M y=0
$$

- In NIWI proofs interpret $\mathrm{c}_{0}=\mathrm{i}_{\mathrm{C}}(0)+\tau^{\top} \mathbf{u}$ as a commitment to $x_{0}=0$, which enables the prover to use the witness $\mathbf{x}=\mathbf{0}, \mathbf{y}=\mathbf{0}$ in all equations
- Zero-knowledge:

Simulated proofs using $x_{0}=0$ are uniformly distributed just as real proofs using $x_{0}=-1$ are

Size of NIZK proofs

Cost of each variable/equation	Subgroup Decision	DDH in both groups	Decision Linear
Variable in G, H or \mathbf{Z}_{p}	1	2	3
Pairing product (t=1)	1	8	9
Multi-exponentiation	1	6	9
Quadratic in \mathbf{Z}_{p}	1	4	6

Summary

- Modules with commuting linear and bilinear maps

$$
\begin{aligned}
& \text { f } \\
& \mathrm{A} \times \mathrm{B} \rightarrow \mathrm{~T} \\
& i_{C} \downarrow \uparrow p_{A} \quad i_{D} \downarrow \uparrow p_{B} \quad i_{W} \downarrow \uparrow p_{T} \\
& \mathrm{C} \times \mathrm{D} \rightarrow \mathrm{~W} \\
& \text { F }
\end{aligned}
$$

Randomized commitments and proofs in C, D

- Efficient NIWI and NIZK proofs that can be used when constructing pairing-based schemes

Open problems

- Modules with bilinear maps useful elsewhere?
- Groups: Simplicity, possible to use special properties
- Modules: Generality, many assumptions at once
- What is the right level of abstraction?
- Other instantiations of modules with bilinear map?
- Known constructions based on groups with bilinear map
- Other ways to construct them?

